GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as M, A, B, E or G.

M marks ("method") are for an attempt to use a correct method (not merely for stating the method).

A marks ("accuracy") are for accurate answers and can only be earned if corresponding M mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer. Typically they are available for correct quotation of points such as 1.96 from tables.

E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in **right-hand** margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in **right-hand** margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy *may* be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

(i)	Uniform average rate of occurrence; Successive arrivals are independent. Suitable arguments for/against each assumption:	E1,E1 for suitable assumptions	
	Eg Rate of occurrence could vary depending on the weather (any reasonable suggestion)	E1, E1 must be in context	4
(ii)	Mean = $\frac{\Sigma xf}{n} = \frac{39 + 40 + 36 + 32 + 15}{100} = \frac{162}{100} = 1.62$	B1 for mean <i>NB answer given</i>	
	Variance = $\frac{1}{n-1} \left(\Sigma f x^2 - n x^2 \right)$	M1 for calculation	
	$=\frac{1}{99}(430-100\times1.62^2)=1.69$ (to 2 d.p.)	A1	3
(iii)	Yes, since mean is close to variance	B1FT	1
(iv)	$P(X = 2) = e^{-1.62} \frac{1.62^2}{2!}$ = 0.260 (3 s.f.)	M1 for probability calc. M0 for tables unless interpolated A1	
	<i>Either:</i> Thus the expected number of 2's is 26 which is reasonably close to the observed value of 20. <i>Or</i> . This probability compares reasonably well with	B1 for expectation of 26 or r.f. of 0.2 E1	4
	the relative frequency 0.2		
(v)	$\lambda = 5 \times 1.62 = 8.1$ Using tables: $P(X \ge 10) = 1 - P(X \le 9)$	B1FT for mean (SOI) M1 for probability from using tables to find $1 - P(X \le 9)$	3
	= 1 - 0.7041 = 0.2959	A1 FT	
(vi)	Mean no. of items in 1 hour = $360 \times 1.62 = 583.2$ Using Normal approx. to the Poisson, $X \sim N(583.2, 583.2)$:	B1 for Normal approx. with correct parameters (SOI)	
	$P(X \le 550.5) = P\left(Z \le \frac{550.5 - 583.2}{\sqrt{583.2}}\right)$	B1 for continuity corr.	4
	$= P(Z \le -1.354) = 1 - \Psi(1.354) = 1 - 0.9121$	in for probability	

= 0.0879 (3 s.f.)	using correct tail A1 CAO, (but FT wrong or omitted CC)	
		19

	<i>X</i> ~ N(38.5,16)			
(i)	$P(X > 45) = P\left(Z > \frac{45 - 38.5}{4}\right)$	M1 for standardizing		
	= P(Z > 1.625)	A1 for 1.625		
	$= 1 - \Phi(1.625) = 1 - 0.9479$	M1 for prob. with	4	
	= 0.0521 (3 s.f.) or 0.052 (to 2 s.f.)	tables and correct tail A1 CAO (min 2 s.f.)		
(ii)	From tables $\Phi^{-1}(0.90) = 1.282$			
	$\frac{x-38.5}{4} = -1.282$	B1 for 1.282 seen M1 for equation in <i>x</i> and negative z-value		
	$x = 38.5 - 1.282 \times 4 = 33.37$		2	
	So 33.4 should be quoted	A1 CAO	3	
	$Y \sim N(51.2, \sigma^2)$			
(iii)	From tables $\Phi^{-1}(0.75) = 0.6745$	B1 for 0.6745 seen		
	55-51.2	with z-value		
	$\frac{1}{\sigma} = 0.6745$			
	$3.8 = 0.6745 \sigma$	A1 NB answer given	3	
	$\sigma = 5.63$			
(iv)		G1 for shape		
	0.12 f(c)			
	0.08	explicitly or by scale		
	0.00			
	0.02 025 30 35 40 45 60 65 60 65 70	G1 for lower max height in diesel G1 for higher variance in diesel	4	
		M1 for probable for		
(v)	$P(Diesel > 45) = P\left(Z > \frac{45 - 51.2}{5.63}\right)$	diesel		

		18
P(D over, P under)+P(D under, P over)+P(both over) or P(D over) + P(P over) - P(both over)		
NB allow correct alternatives based on:	A1 CAO (2 s.f. min)	
$= 1 - (1 - 0.0521) \times (1 - 0.8646)$ = 1 - 0.9479 x 0.1354 = 0.8717	M1 <i>dep</i> for correct probabilities	
P(At least one over 45) = 1 - P(Both less than 45)	M1 for correct structure	4
$= P(Z > -1.101) = \Phi(1.101) = 0.8646$		

(i)	$\overline{x} = 4.5, \overline{y} = 26.85$ $b = \frac{Sxy}{Sxx} = \frac{983.6 - 36 \times 214.8/8}{204 - 36^2/8} = \frac{17}{42} = 0.405$ OR $b = \frac{983.6/8 - 4.5 \times 26.85}{204/8 - 4.5^2} = \frac{2.125}{5.25} = 0.405$	B1 for \overline{x} and \overline{y} used (SOI) M1 for attempt at gradient (<i>b</i>)	
	hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$ $\Rightarrow y - 26.85 = 0.405(x - 4.5)$ $\Rightarrow y = 0.405x + 25.03$	A1 for 0.405 cao M1 <i>indep</i> for equation of line A1FT for complete equation	5
(ii)	$x = 4 \Rightarrow$ predicted $y = 0.405 \times 4 + 25.03 = 26.65$ Residual = 27.5 - 26.65 = 0.85	M1 for prediction A1FT for ± 0.85 B1FT for sign (+)	3
(iii)	The new equation would be preferable, since the equation in part (i) is influenced by the unrepresentative point (4,27.5)	B1 E1	2
(iv)	H ₀ : $\rho = 0$; H ₁ : $\rho > 0$ where ρ represents the population correlation coefficient Critical value at 5% level is 0.3783 Since 0.209 < 0.3783, there is not sufficient evidence to reject H ₀ , i.e. there is not sufficient evidence to conclude that there is any correlation between cycling and swimming times.	B1 for H_0 and H_1 B1 for defining ρ B1 for 0.3783 M1 for comparison leading to conclusion A1 <i>dep on cv</i> for	5

PMT

		in context	
(v)	Underlying distribution must be bivariate normal.		
		B1	
	The distribution of points on the scatter diagram		
	should be approximately elliptical.		2
		E1	
			17

(a) (i)	H ₀ : $\mu = 166500$; H ₁ : $\mu > 166500$ Where μ denotes the mean selling price in pounds of the population of houses on the large estate	B1 for both correct B1 for definition of μ	2
(ii)	$n = 6, \Sigma x = 1018500, \ \overline{x} = \pounds 169750$	B1CAO	
	Test statistic = $\frac{169750 - 166500}{14200 \sqrt{6}} = \frac{3250}{5797}$	M1 must include $\sqrt{6}$	
	= 0.5606	A1FT	
	5% level 1 tailed critical value of $z = 1.645$ 0.5606 < 1.645 so not significant. There is insufficient evidence to reject H ₀	B1 for 1.645 M1 for comparison leading to a conclusion	6
	It is reasonable to conclude that houses on this estate are not more expensive than in the rest of the suburbs.	A1 for conclusion in words in context	

<u> </u>		Type (of drink	Row		
O	oserved	Alcoholic	Soft drinks	totals		
	Business		63	117		
Type of	Tourist	95	41	136		
customer	Local	71	76	147		
Column totals		220	180	400		
						M1 A1 for expected
Ex	spected	Туре о	of drink	Row		values (to 2dp)
	•	Alcoholic	Soft drinks	totals		
Tune	Business	64.35	52.65	117		
of	Tourist	74.80	61.20	136		
customer	Local	80.85	66.15	147		
Column tot	als	220	180	400		M1 for valid attempt
				1		at (O-E) ² /E
Chi squar	ed contribution	Type of drink		Row		
	D ·	Alcoholic	Soft drinks	2 (00		M1dep for summatio
Туре	Business	1.665	2.035	3.699		
of	Tourist	5.455	0.00/	12.122		_
customer	Local	1.200	1.467		A1CAO for X^2	
	10					
$X^{-} = 18$.49					B1 for 2 deg of f
	1× ²					B1 CAO for cv
Refer to	\mathcal{X}_2^-	1 1 7	001			B1dep on cv
Critical	value at 5%	E1				
Kesult 19	s significant					
There is	some asso	pe and				
ype of o	drink.					
		n' montionoc	I do not s	award		

Mark Scheme January 2006

		D1	
(1)	Faults are detected randomly and independently	DI	
	Uniform (mean) rate of occurrence	B1	2
	$(4) P(X = 0) = -0.15 0.15^{\circ} = 0.8607$	M1 for probability	
(ii)	(A) $P(X=0) = e - \frac{1}{0!} = 0.8607$	calc. M0 for tables unless	
		interpolated	
		A1	
	(B) $P(X \ge 2) = 1 - 0.8607 - e^{-0.15} \frac{0.15^1}{100000000000000000000000000000000000$	M1	4
	= 1 - 0.8607 - 0.1291 = 0.0102	A1	-
(iii)			
	$\lambda = 30 \times 0.15 = 4.5$	B1 for mean (SOI)	
	Using tables: $P(X \le 3) = 0.3423$	M1 attempt to find	
		$P(X \le 3)$	3
		A1	
(iv)	Poisson distribution with $\lambda = 10 \times (0.15 + 0.05) = 2$	B1 for Poisson stated	
	$P(X-5) = e^{-2}\frac{2^5}{2} = 0.0361(3 \text{ sf})$	B1 for $\lambda = 2$	
	1(1-5) = 0 5! $5!$	M1 for calculation or	
	or from tables $= 0.9834 - 0.9473 = 0.0361$	Al FT	4
(v)	Mean no. of items in 200 days = $200 \times 0.2 = 40$	B1 for Normal approx.	
	Using Normal approx. to the Poisson,	(SOI)	
	$X \sim N(40,40)$:	B1 for both parameters	
	$P(X \ge 50) = P\left(Z > \frac{49.5 - 40}{\sqrt{40}}\right)$	B1 for continuity corr.	
	$= P(Z > 1.502) = 1 - \Phi(1.502) = 1 - 0.9334$	M1 for probability	
	= 0.0666 (3 s.f.)	using correct tail A1 cao , (but FT wrong or omitted CC)	5
			18

Mark Scheme January 2006

Question 2

	$X \sim N(42, 3^2)$		
(i)	$P(X > 50.0) - P(Z > \frac{50.0 - 42.0}{2})$		
(A)	1(1 > 50.0) = 1(2 > 3.0)	M1 for standardizing	
	= P(Z > 2.667)	MI for prob. calc.	
	-1 - $\Phi(2.667)$ - 1 - 0.9962		3
	= 0.0038	NR answer given	3
	- 0.0000	The answer given	
	P(not positive) = 0.9962	B1 for use of 0.9962	
(i)		in binomial expression	
(B)	P(At least one is out of 7 is positive)		
	$= 1 - 0.9962^7 = 1 - 0.9737$	M1 for correct method	3
	= 0.0263	A1 CAO	
	If an innocent athlete is tested / times in a year there	El comment on their	
(\mathbf{I})	is a reasonable possibility (1 in 40 chance) of testing	probability in (1) B	
(C)	athlates may come under suspicion and suffer a	F1 for sensible	
	suspension so the penalty could be regarded as unfair	contextual conclusion	2
	Or this is a necessary evil in the fight against	consistent with first	4
	performance enhancing drugs in sport.	comment	
		B1 for B(,) or	
(ii)	D(1000_0_0020)	Binomial	
(A)	B(1000, 0.0038)	B1 <i>dep</i> for both	2
		parameters	
(ii)	A suitable approximating distribution is Poisson(3.8)	B1 for Poisson soi	
(B)	P(at least 10 positive tests)	B1FT <i>dep</i> for $\lambda = 3.8$	
	$= P(X \ge 10) = 1 - P(X \le 9)$	M1 for attempt to use	4
	1 0.0010		-
	= 1 - 0.9942	$1 - P(X \le 9)$	
	- 0.0058	A1 FT	
	NB Do not allow use of Normal approximation		
(iii)	P(not testing positive) = 0.995	B1 for 0.995 seen	
		(or implied by 2.576)	
	From tables $z = \Phi^{-1}(0.995) = 2.576$	B1 for 2.576 (FT their	
		0.995)	
	$\frac{h-48.0}{2} = 2.576$	M1 for equation in h	4
	2.0	and positive z-value	
	$h = 48.0 + 2.576 \times 2.0 = 53.15$	A1 CAO	
		ALCAU	
			18

PMT

			1										
(i)	Rank x	1	5	4	7	6	8	10	3	9	2	M1 for ranking (allow	
	Rank y	2	4	5	8	9	7	10	6	3	1	all ranks reversed)	
	$\frac{d}{d^2}$	-1	1	-1	-1	-3	1	0	-3	6	1	M1 for d^2	
	d	1	1	1	1	9	1	0	9	36	1	A1 CAO for Σd^2	
	<i>r</i> –	1_	$6\Sigma d^2$	2	1_	6×6	0					AI CAO IOI Zu	
	$r_s -$	$n = \frac{1}{n}$	$(n^2 -$	-1)	M1 for structure of r_s	-							
					using their Σd^2	3							
	= 0.636 (to 3 s.f.) [<i>allow</i> 0.64 to 2 s.f.]											A1 f.t. for $ r_{\rm s} < 1$	
											NB No ranking scores		
					zero								
(ii)													
	H ₀ : no	asso	ciatio	on be	twee	n x a	nd y					B1 for H ₀	
	H ₁ : po	sitive	e asso	ociati	on be	etwee	en x a	and y	,			B1 for H ₁	
	Lookin	g for	posi	tive a	assoc	iatio	n (on	e-tai	l test):		NB $H_0 H_1 \underline{not}$ ito rho	
	Critical	valu	ie at :	5% le	evel i	s 0.5	636					B1 for ± 0.5636	
												(FT their H ₁)	
	Since 0	.636 1	> 0.5	5636,	ther	e is s	uffic	ient	evide	ence	to	M1 for comparison	5
	i.e. con	1 ₀ , clude	e that	ther	e app	bears	to be	e pos	itive			with c.v., provided $ \mathbf{r} < 1$	
	associa	tion l	betwo	een te	empe	ratur	e and	d niti	ous o	oxide)	$ r_s < 1$ A1 for conclusion in	
	level.											words f.t. their r_s and	
(iii)												sensible cv	
(111)	Underly	ying	distri	butio	on mu	ust be	e biv	ariate	e nor	mal.		B1 CAO for bivariate	
	If the diagram	listri	butio	n is t	olivari	iate n	orm	al the	en the	e sca	tter	normal P1 indep for alliptical	
	This sc	atter	diagi	c an ram i	s not	ellip	otical	and	so a l	РМС	C	shape	
	test wo	uld n	ot be	vali	d.							E1 dep for conclusion	3
	(Allow) draw a f	comn firm c	nent i conclu	ndica ision	ting t on ell	hat th liptici	ne sar itv an	nple i d so	is too on va	smal liditv	l to		
(iv)	<i>n</i> =60, F	PMC	C crit	tical	value	e is r	= 0.2	2997			,	B1	
	So the	critic	al reg	gion	is $r \ge$	0.29	997					B1 FT their sensible	2
											c.v.		
(v)	Any the	ree of	f the	follo	wing	: .				-		E1	
	• Co • Th	rrelat	tion c	toes: be a	not i1 third	nply facto	caus	ation	1; o the			E1	
	cor	relat	ion b	etwe	en te	mpei	rature	e and	6 UIC	ne le	vel);		3
	• the	clair	m cou	uld b	e true	e;						E1	
	• inc	rease	ed oz	one c	could	caus	se hig	gher	temp	eratu	res.		18

Mark Scheme January 2006

		1	
(i)	H ₀ : no association between method of travel and type	B1 for both	
	H_1 : some association between method of travel and		1
	type of school;		
(ii)	Expected frequency = $120/200 \times 70 = 42$	M1 A1	
	Contribution = $(21 - 42)^2 / 42$	M1 for valid attempt	
	= 10.5	at $(O-E)^2/E$	4
		A1 FT their 42	
		provided $O = 21$	
(iii)		(at least 1 dp)	
(111)	$X^2 = 42.64$		
		B1 for 2 deg of f(seen)	
	Refer to \mathcal{X}_2^2		
	Critical value at 5% level = 5.991	B1 CAO for cv	
	Result is significant	B1 for significant (FT	
	There appears to be some association between method	their c.v. provided	4
	of travel and year group.	consistent with	
	NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do	E1	
	not award first B1or final E1		
(iv)	U_{1} , $u = 18.3$, U_{1} , $u \neq 18.3$	B1 for both correct	
(1V)	μ_0 . $\mu = 10.3$, μ_1 . $\mu \neq 10.3$ Where μ denotes the mean travel time by car for the	B1 for definition of μ	
	whole population.		
	22.4 - 18.3 4.1	M1 (standardizing	
	1 est statistic $z = \frac{1}{8.0/\sqrt{20}} = \frac{1}{1.789}$	sample mean)	
	= 2.292	A1 for test statistic	
		D16 1645	
	10% level 2 tailed critical value of z is 1.645	BI IOT 1.645 M1 for comparison	
	2.292 > 1.645 so significant.	leading to a	7
	There is evidence to reject H_0	conclusion	,
	It is reasonable to conclude that the mean travel time	A1 for conclusion in	
	by car is unforcint from that by bus.	words and context	
(v)	The test suggests that students who travel by bus get to		
	school more quickly.		
	This may be due to their journays have a shorter		
	distance		
	It may be due to bus lanes allowing buses to avoid		
	congestion.		
	It is possible that the test result was incorrect (ie		
	implication of a Type I error).	E1, E1 for any two	2
	More investigation is needed before any firm	vanu comments	
	conclusion can be reached.		18

Mark Scheme January 2006

Question 4 chi squared calculations

H ₀ : no association between method of travel and type of school; H ₁ : some association between method of travel and type of school;				
		Type of school		Row
Ob	served	Year 6	Year 11	totals
	Bus	21	49	70
Method	Car	65	15	80
of travel	Cycle/Walk	34	16	50
Colur	nn totals	120	80	200
		Type of	f school	Row
Ex]	pected	Year 6	Year 11	totals
	Bus	42	28	70
Method	Car	48	32	80
of travel	Cycle/Walk	30	20	50
Colur	nn totals	120	80	200
Chi S	Squared	Type of	fschool	Row
Cont	ribution	Year 6	Year 11	totals
	Bus	10.50	15.75	26.25
Method	Car	6.02	9.03	15.05
of travel	Cycle/Walk	0.53	0.80	1.33
Colur	nn totals	17.05	25.58	42.64

Mark Scheme

June 2006

PMT

		1	
(i)	$P(X = 1) = 8 \times 0.1^{1} \times 0.9^{7}$ = 0.383	M1 for binomial probability P(<i>X</i> =1) A1 (at least 2sf) CAO	2
(ii)	$\lambda = 30 \times 0.1 = 3$		
. ,	26	B1 for mean SOI	1
	(A) $P(X = 6) = e^{-3} \frac{3}{6!} = 0.0504(3 \text{ s.f.})$ or from tables $= 0.9665 - 0.9161 = 0.0504$	M1 for calculation or use of tables to obtain P(X=6) A1 (at least 2sf) CAO	2
		M1 for correct	
	(B) Using tables: $P(X \ge 8) = 1 - P(X \le 7)$	probability calc'	2
	= 1 - 0.9881 = 0.0119	A1 (at least 2st) CAO	
(iii)	<i>n</i> is large and <i>p</i> is small	B1, B1 Allow appropriate numerical ranges	2
(iv)	$\mu = np = 120 \times 0.1 = 12$	B1	
	$\sigma^2 = npq = 120 \times 0.1 \times 0.9 = 10.8$	B1	2
(v)	$P(X > 15.5) = P\left(Z > \frac{15.5 - 12}{\sqrt{10.8}}\right)$ = P(Z > 1.065) = 1 - $\Phi(1.065)$ = 1 - 0.8566 = 0.1434 NB Allow full marks for use of N(12,12) as an approximation to Poisson(12) leading to 1 - $\Phi(1.010)$ = 1 - 0.8438 = 0.1562	B1 for correct continuity correction. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	3
(vi)	From tables $\Phi^{-1}(0.99) = 2.326$ $\frac{x+0.5-12}{\sqrt{10.8}} \ge 2.326$ $x = 11.5 + 2.326 \times \sqrt{10.8} \ge 19.14$ So 20 breakfasts should be carried NB Allow full marks for use of N(12,12) leading to $x \ge 11.5 + 2.326 \times \sqrt{12} = 19.56$	B1 for 2.326 seen M1 for equation in <i>x</i> and positive <i>z</i> -value A1 CAO (condone 19.64) A1FT for rounding appropriately (i.e. round up if c.c. used o/w rounding should be to nearest integer)	4

(i)	<i>X</i> ~ N(49.7,1.6 ²)		
	(A) $P(X > 51.5) = P\left(Z > \frac{51.5 - 49.7}{1.6}\right)$	M1 for standardizing	
	= P(Z > 1.125)	M1 for prob. calc.	
	$-1 - \phi(1.125) - 1 - 0.8696 - 0.1304$	A1 (at least 2 s.f.)	
	$= 1 - \varphi(1.123) = 1 - 0.0030 = 0.1304$	(
	(B) $P(X < 48.0) = P\left(Z < \frac{48.0 - 49.7}{1.6}\right)$ = $P(Z < -1.0625) = 1 - \Phi(1.0625)$ = $1 - 0.8560 = 0.1440$ P(48.0 < X < 51.5) = 1 - 0.1304 - 0.1440 = 0.7256	M1 for appropriate prob' calc. A1 (0.725 – 0.726)	5
(ii)	P(one over 51.5, three between 48.0 and 51.5)		
	$=\binom{4}{1} \times 0.7256 \times 0.2744^3 = 0.0600$	M1 for coefficient	
	(1)	0.2744 ³	
		A1 FT (at least 2 sf)	3
(iii)	From tables.	B1 for 0.2533 or	
(,	$\Phi^{-1}(0.60) = 0.2533 \Phi^{-1}(0.30) = -0.5244$	0.5244 seen	
	$49.0 - \mu + 0.2533 \sigma$	M1 for at least one correct equation $\mu \& \sigma$	
	$43.0 = \mu + 0.2333 0$		
	$47.5 = \mu = 0.3244.0$	M1 for attempt to	
	1.5 = 0.7777 0	solve two correct	
		equations	4
	$\sigma = 1.929, \mu = 48.51$	A1 CAO for both	
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3-year-old boys.	E1	
	<i>n</i> = 10,		
	Test statistic $Z = \frac{50.45 - 49.7}{1.6/\sqrt{10}} = \frac{0.75}{0.5060} = 1.482$	M1 A1(at least 3sf)	
	10% level 1 tailed critical value of <i>z</i> is 1.282	B1 for 1.282	
	1.482 > 1.282 so significant.	M1 for comparison leading to a	
	There is sufficient evidence to reject H_0 and conclude that organically fed 3-year-old boys have a higher mean head circumference.	conclusion A1 for conclusion in context	6
			18

Ouestion 3	
-------------------	--

(i)	EITHER:		
	$S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 6235575 - \frac{1}{10} \times 4715 \times 13175$	M1 for method for S _{xy}	
	= 23562.5	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 2237725 - \frac{1}{10} \times 4715^2 =$ 14602 5	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 17455825 - \frac{1}{10} \times 13175^2 =$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	
	97762.5		
	$r = \frac{S_{xy}}{\sqrt{S_{xy}}} = \frac{23562.5}{\sqrt{14602.5 + 07762.5}} = 0.624$	M1 for method for cov (<i>x</i> , <i>y</i>)	
	$\sqrt{S_{xx}S_{yy}}$ $\sqrt{14002.3 \times 97702.5}$ OR:	M1 for method for at least one msd	
	$cov (x,y) = \frac{2xy}{n} - \frac{xy}{xy} = 6235575/10 - 471.5 \times 1317.5$ $= 2356.25$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(14602.5/10)} = \sqrt{1460.25} = 38.21$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	5
	$\operatorname{rmsd}(y) = \sqrt{\frac{S_{yy}}{n}} = \sqrt{(97762.5/10)} = \sqrt{9776.25} = 98.87$		
	cov(x,y) 2356.25		
	$T = \frac{1}{rmsd(x)rmsd(y)} = \frac{1}{38.21 \times 98.87} = 0.624$		
(ii)	$H_0: \rho = 0$	B1 for H_0 , H_1 in	
	Π_1 . $\rho \neq 0$ (two-tailed test)	B1 for defining ρ	
	where ρ is the population correlation coefficient		
	For $n = 10$, 5% critical value = 0.6319	B1FT for critical value	
	Since 0.624 < 0.6319 we cannot reject H_0 :	M1 for sensible comparison leading to	6
	There is not sufficient evidence at the 5% level to suggest that there is any correlation between length and circumference.	a conclusion A1 FT for result B1 FT for conclusion in context	
(iii)	 (A) This is the probability of rejecting H₀ when it is in fact true. (B) Advantage of 1% level – less likely to reject H₀ 	B1 for 'P(reject H ₀)' B1 for 'when true'	2
	when it is true. Disadvantage of 1% level – less likely to accept H_1 when H_0 is false.	B1, B1 Accept answers in context	2

(iv)	The student's approach is not valid.	E1	
	If a statistical procedure is repeated with a new		
	sample, we should not simply ignore one of the two	E1 – allow suitable	
	outcomes.	alternatives.	
	The student could combine the two sets of data into a	E1 for combining	
	single set of twenty measurements.	samples.	3
			18

Ob	served	Mus	ical prefer	ence	Row		
		Рор	Classical	Jazz	totals		
Age	Under 25	57	15	12	84	-	
group	25 – 50	43	21	21	85		M1 A2 for expected
	Over 50	22	32	27	81		values (at least 1
Colu	mn totals	122	68	60	250		values (at least 1
		1				1	dp) (allow A1 for a
Ex	pected	Mus	ical prefer	ence	Row		least one row or
	llodor	Рор	Classical	Jazz	totals		
Ane	25	40.992	22.848	20.160	84		column correct)
group	25 – 50	41.480	23.120	20.400	85		
	Over 50	39.528	22.032	19.440	81		
Colu	mn totals	122	68	60	250		
		Mue	ical profes			1	
Cont	ributions	Pop					M1 for valid attempt a
	Under	гор	Classical	Jazz			(O-E) ² /E
Age	25	6.25	2.70	3.30			A1 for all correct
group	25 – 50	0.06	0.19	0.02			
	Over 50	7.77	4.51	2.94			Madam famoura dia
							M1dep for summation A1 for X^2 (27 7 – 27 8)
X ² = 2 Refer t	7.74 ο χ ₄ ² Value at 5	i% level	= 9.488				B1 for 4 deg of f B1 CAO for cv B1FT E1 (conclusion in

(ii)	The values of 6.25 and 7.77 show that under 25's have a strong positive association with pop whereas over 50's have a strong negative association with pop. The values of 4.51 and 2.94 show that over 50's have a reasonably strong positive association with both classical and jazz. The values of 2.70 and 3.30 show that under 25's have a reasonably strong negative associations with both classical and jazz. The 25-50 group's preferences differ very little from the overall preferences.	 B1, B1 for specific reference to a value from the table of contributions followed by an appropriate comment B1, B1 (as above for second value) B1, B1 (as above for third value) 	6
			18

4767

PMT

(i)			
	$\bar{t} = 112.8, \ \bar{v} = 0.6$	B1 for \bar{t} and \bar{v} used (SOI)	
	$b = \frac{Svt}{Svv} = \frac{405.2 - 3 \times 564/5}{2.20 - 3^2/5} = \frac{66.8}{0.4} = 167$	M1 for attempt at gradient (<i>b</i>)	
	OR $b = \frac{405.2/5 - 0.6 \times 112.8}{2.20/5 - 0.6^2} = \frac{13.36}{0.08} = 167$	A1 for 167 CAO	
	2.20/5-0.6 0.08	M1 for equation of line	
	hence least squares regression line is:	A1 FT	
	$ \begin{array}{l} t - t = b(v - v) \\ \Rightarrow t - 112.8 = 167(v - 0.6) \\ \Rightarrow t = 167v + 12.6 \end{array} $		5
(ii)			5
(")	(A) For 0.5 litres, predicted time = = $167 \times 0.5 + 12.6 = 96.1$ seconds	M1 for at least one prediction attempted	
	(B) For 1.5 litres, predicted time = = $167 \times 1.5 + 12.6 = 263.1$ seconds	A1 for both answers (FT their equation if <i>b</i> >0) NB for reading predictions off	
	Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation	the graph only award A1 if accurate to nearest whole number	
	and the data is a good fit' 'Second prediction is less certain as it is an extrapolation'	E1 (first prediction) E1 (second prediction)	4
(iii)	The <i>v</i> -coefficient is the number of additional seconds required for each extra litre of water	E1 for indication of rate wrt	
		E1 <i>dep</i> for specifying ito units	2
(iv)	$v = 0.8 \Rightarrow$ predicted $t = 167 \times 0.8 + 12.6 = 146.2$ Residual = 156 - 146.2 = 9.8	M1 for either prediction M1 for either subtraction A1 CAO for absolute value	
	$v = 1.0 \Rightarrow$	B1 for both signs correct.	
	predicted $t = 167 \times 1.0 + 12.6 = 179.6$ Residual = $172 - 179.6 = -7.6$		4
(v)	The residuals can be measured by finding the vertical	E1 for distance	
	line. The sign will be negative if the point is below	E1 for sign	
	the regression line (and positive if above).		3
			18

Que	stion 2		
(a) (i)	$X \sim N(28,16)$ P(24 < X < 33) = P $\left(\frac{24-28}{4} < Z < \frac{33-28}{4}\right)$	M1 for standardizing	
	= P(-1 < Z < 1, 25)	A1 for 1. 25 and -1	
	$= \Phi(1.25) - (1 - \Phi(1))$ = 0.8944 - (1 -0.8413) = 0.8944 - 0.1587 = 0.7357 (4 s.f.) or 0.736 (to 3 s.f.)	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	4
(ii)	25000 ×0.7357 ×0.1 = £1839	M1 for either product, (with	
	25000 ×0.1587 ×0.05 = £198	or without price)	
	$Total = \pounds1839 + \pounds198 = \pounds2037$	products with price A1 CAO awrt £2040	3
	<i>X</i> ~ N(<i>k</i> , 16)	D4.4 4.045	
(111)	From tables $\Phi^{-1}(0.95) = 1.645$	B1 for ±1.645 seen	
	$\frac{33-k}{4} = 1.645$	M1 for correct equation in <i>k</i> with positive z-value	
	$33 - k = 1.645 \times 4$		
	k = 33 - 6.58	A1 CAO	
	<i>k</i> = 26.42 (4 s.f.) <i>or</i> 26.4 (to 3 s.f.)		3
(b) (i)	H ₀ : $\mu = 0.155$; H ₁ : $\mu > 0.155$ Where μ denotes the mean weight in kilograms of the population of onions of the new variety	B1 for both correct & ito μ B1 for definition of μ	2
(ii)	Mean weight = 4.77/25 = 0.1908	B1 M1 must include 1/25	
	Test statistic = $\frac{0.1908 - 0.155}{\sqrt{0.005}/\sqrt{25}} = \frac{0.0358}{0.01414}$ = 2.531	A1FT	
	1% level 1-tailed critical value of $z = 2.326$ 2.531 > 2.236 so significant. There is sufficient evidence to reject H ₀	B1 for 2.326 M1 For sensible comparison leading to a conclusion	
	It is reasonable to conclude that the new variety has a higher mean weight.	A1 for correct, consistent conclusion in words and in context	6
			18

5 , , , , , , , , , , , , , , , , , , ,	B1 fo
- (= 0.4375)	NR a

Ques	stion 3		
(i)	Mean = $\frac{\Sigma xf}{n} = \frac{0+20+12+3}{80} = \frac{35}{80}$ (= 0.4375)	B1 for mean <i>NB answer given</i>	1
	Variance = $0.6907^2 = 0.4771$	B1 for variance	
(ii)	So Poisson distribution may be appropriate, since mean is close to variance	E1dep on squaring s	2
(iii)	$P(X=1) = e^{-0.4375} \frac{0.4375^{1}}{1!}$	M1 for probability calc. M0 for tables unless interpolated (0.2813)	
	= 0.282 (3 s.f.)	A1	
	<i>Either:</i> Thus the expected number of 1's is 22.6 which is reasonably close to the observed value of 20. <i>Or</i> : This probability compares reasonably well with	B1 for expectation of 22.6 or r.f. of 0.25 E1 for comparison	4
(iv)	the relative frequency 0.25 $h = 8 \times 0.4375 = 3.5$	B1 for mean (SOI)	
(10)	Using tables: $P(X \ge 12) = 1 - P(X \le 11)$ = 1 - 0.9997 = 0.0003	M1 for using tables to find 1 $-P(X \le 11)$ A1 FT	
			3
(v)	The probability of at least 12 free repairs is very low, so the model is not appropriate. This is probably because the mean number of free repairs in the launderette will be much higher since the machines will get much more use than usual.	E1 for 'at least 12' E1 for very low E1	3
(vi)	(A) $\lambda = 0.4375 + 0.15 = 0.5875$	B1 for mean (SOI)	
	$P(X = 3) = e^{-0.5875} \frac{0.5875^3}{3!}$ = 0.0188 (3 s.f.)	M1 A1	3
	(B) P(Drier needs 1) = $e^{-0.15} \frac{0.15^1}{1!} = 0.129$	B1 for 0.129 (SOI)	
	P(Each needs just 1) = 0.282×0.129	B1FT for 0.036	2
	= 0.036		2
			18

Outotion 4

Que	estion 4					1				
(i)	H ₀ : no as location:	ssociation betw	veen am	bition and	home	B1 in context	1			
	H ₁ : some association between ambition and home location;									
			Home							
		bserved	City	Non-city						
	Amphitic	Good results	102	147						
		Other	75	156		M1 A1 for attempt at				
				•	- -	expected values				
	Е	xpected	Home	location						
			City	Non-city						
	Ambitio	on Good results	91.82	157.18						
		Other	85.18	145.82		M1 for valid attempt at (O- E) ² /E				
	Contri	bution to the	Home	location	1	,				
	tes	t statistic	City	Non-city						
		Good results	1.129	0.659						
	Ambitio	Other	1.217	0.711						
						A1CAO for X^2				
						B1 for 1 dof SOI	4			
	$X^2 = 3.716$	-				B1 CAO for cv				
	Refer to χ_1	2				B1 dep on attempt at cv E1 conclusion in context				
	Result is no	ue at 5% level = ot significant	: 3.841							
	There is in:	sufficient evider	nce to con	clude that t	here is		4			
	any associa	ation between h	nome locat	tion and am	bition.					
	award first E	Blor final B1 or fir	nal E1	ntioned, do i						
(ii)	Expected C	Country, Results	s = 249 * 1 - 231 * 150	56 / 480 = 3 6 / 480 - 75	80.93 5 08	B1 B1				
(~)			- 201 100	07400 - 70	.00		2			
(<i>B</i>)	Refer to χ_2	2	5 001			B1 for 2 dof SOI				
	Result is si	gnificant	5.991			E1 for conclusion in				
	There is	evidence to	conclude	e that the	ere is	context				
()	association	between home	e location a	and ambitio	n.	E1 for correct obc ⁿ for	3			
(0)	town to have	/e 'Results' as t	heir main	ambition. L	_OW	'Country'				
	contribution	ns show that city	y and town	n students o	do not	E1 for additional correct	2			
	appear to c	amer markedly i	n their am	DITIONS.		to contributions)	~			
(iii)	Conclusion	in (i) is valid if	only categ	orizing hom	1e	E1				
	subdivided	o city and non-c into town and c	city. Howe	ever if non-c s additional	city is	E1				
	subdivision	gives the data	more prec	cision and a	llows					
	the relation	ship in part (ii)	(<i>C</i>) to be r	evealed.			2			
							18			
	l									

(ii)	$P(X < 10) = P\left(Z < \frac{3}{3}\right)$ = P(Z < -0.333) = $\Phi(-0.333) = 1 - \Phi(0.333)$ = 1 - 0.6304 = 0.3696 P(3 of 8 less than ten) (8)	M1 for use of tables with their <i>z</i> -value M1 <i>dep</i> for correct tail A1CAO (must include use of differences) M1 for coefficient	4
	$= \binom{6}{3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for 0.3696 ³ × 0.6304 ⁵ A1 FT (min 2sf)	3
(iii)	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^{2} = npq = 100 \times 0.3696 \times 0.6304 = 23.30$ $Y \sim N(36.96,23.30)$ $P(Y \ge 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$ $= P(Z > 2.598) = 1 - \Phi(2.598) = 1 - 0.9953$ = 0.0047	M1 for Normal approximation with correct (FT) parameters B1 for continuity corr. M1 for standardizing and using correct tail A1 CAO (FT 50.5 or omitted CC)	4
(iv)	H ₀ : $\mu = 11$; H ₁ : $\mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for H_{0} as seen. B1 for H_1 , as seen. B1 for definition of μ	3
(v)	Test statistic = $\frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6}$ = 2.23 5% level 1 tailed critical value of z = 1.645 2.23 > 1.645, so significant. There is sufficient evidence to reject H ₀ It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	 M1 must include √25 A1 (FT their μ) B1 for 1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context (FT their μ) 	5

		1	1		1					1	1	7	M1 6	
(1)	x y	2.61 3.2	2.73 2.6	2.87 3.5	2.96 3.1	3.05 2.8	3.14 2.7	3.17 3.4	3.24 3.3	3.76 4.4	4.1		all ranks reversed)	
	Rank x	10	9	8	7	6	5	4	3	2	1		M1 for d^2	
	Rank y	6	10	3	7	8	9	4	5	1	2	_		
	$\frac{a}{d^2}$	16	-1	25	0	4	16	0	-2	1	1	-	A1 for $\Sigma d^2 = 68$	
				2		-							M1 for method for r_s	5
	$r_s = 1$	$\frac{-}{n}$	$\frac{6\Sigma d}{(n^2 - $	- <u>1)</u> =	= 1 –	$\frac{6\times}{10\times}$	68 < 99						A1 f.t. for $ r_s < 1$ NB No ranking scores	
	=	0.588	8 (to	3 s.f.) [allov	v 0.5	9 to	2 s.f.]				
(ii)														
	H ₀ : no a	issoc	iatioı	n bet	weer	n x a	nd y						B1 for $H_{0,}$ in context.	
	H ₁ : posi	itive	assoc	ciatio	n be	etwee	en <i>x</i> a	ind y					B1 for $H_{1,}$ in context.	
	Looking	for p	positi	ve as	ssoci	iatio	n (on	e–tai	l test	:): c	ritica	ıl	NB $H_0 H_1 \underline{not}$ ito ρ	
	value at	5% 1	evel	is 0.5	5636)							B1 for ± 0.5636	
	Since 0.: Ho	588>	0.56	36, t	here	is su	ıffici	ent e	vide	nce t	o rej	ect	M1 for sensible	5
	i.e. conc weight x	lude and	that t estin	there nated	is p wei	ositiv ight y	ve as v.	socia	tion	betw	veen	true	comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words & in context, f.t.	5
(iii)	$\Sigma x = 31.$	63. 2	$\Sigma v =$	33.1.	Σ	$x^2 = 1$	01.9	2, Σ	$v^2 =$	112.	61.		their r_s and sensible cv	
	$\Sigma xy = 10$)6.51	•					,			2			
	$S_{xy} = X$	Σxy -	$-\frac{1}{n}\Sigma$	xΣy	= 1	06.5	$1 - \frac{1}{10}$	$\frac{1}{5} \times 31$.63 :	× 33.	1		M1 for method for S_{xy}	
	= 1.	8147											M1 for method for at	
	$S = \Sigma$	$2x^2$ –	$\frac{1}{2}(2)$	$(2x)^2$	= 1	01.9	2	[⊥] × 3	1 63	2 =	1 874	13	least one of S_{xx} or S_{yy}	
	~ _{XX} _	2	$n^{(-1)}$) ²	-		- 1	0					A1 for at least one of $S_{xy_i} S_{xx_i} S_{yy}$ correct.	
	$S_{yy} = \Sigma_{yy}$	y² –	$\frac{-(\Sigma n)}{n}$	y) =	= 112	2.61	$-\frac{1}{10}$	× 33.	12 =	3.04	.9		M1 for structure of <i>r</i>	5
	$r = \frac{S}{\sqrt{S_{z}}}$	\mathbf{S}_{xy}	- =	$\sqrt{1.8}$	1.8 3743	147 3×3.	049	= 0	.759				A1 (awrt 0.76)	
(•)	T T ^	1 -		<u>a</u> .	1									
(iv)	Use of t not just Thus it therefore	the P the the has pro	PMC rank more vide	C is l ing l e inf a mo	b <i>ette</i> out t orma re d	<i>er si</i> <i>he a</i> ation iscrii	nce i ctua thai ninai	it tak l val n Sp tory f	<i>tes in ue o</i> earm test.	<i>ito c</i> f the ian's	<i>wei</i> and	unt ights. 1 will	E1 for has values, not just ranks E1 for contains more information Allow alternatives.	
	Critical PMCC i only just	value s ver t sign	e for a y hig iifica	rho = hly s nt.	0.5 igni	494 fican	t wh	ereas	s Spe	arma	an's i	is	B1 for a cv E1 dep	4
														19

	(A) $P(X = 1) = 0.1712 - 0.0408 = 0.1304$	M1 for tables	
(i)	$CP = e^{-3.2} \frac{3.2^1}{1000} = 0.1204$	A1 (2 s.f. WWW)	
	$OK = e - \frac{1!}{1!} = 0.1304$		
	(B) $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8946$	M1	
	= 0.1054	A1	4
(ii)			
	(A) $\lambda = 3.2 \div 5 = 0.64$	B1 for mean (SOI)	
	$P(K-1) = -0.64 \cdot 0.64^{1} = 0.2275$	M1 for probability	
	$P(x=1) = e - \frac{1!}{1!} = 0.3375$	A1	
	(B) P(exactly one in each of 5 mins)	B1 (FT to at least 2 s.f.)	4
	$= 0.3375^3 = 0.004379$		
(iii)	Mean no. of calls in 1 hour = $12 \times 3.2 = 38.4$	B1 for Normal approx	
	Using Normal approx. to the Poisson,	with correct parameters	
	<i>X</i> ~ N(38.4, 38.4)	(SOI)	
	(-45.5-38.4)	B1 for continuity corr	4
	$P(X \le 45.5) = P\left(Z \le \frac{1}{\sqrt{38.4}}\right)$	Di foi continuity con.	-
	$= P(Z \le 1.146) = \Phi(1.146) = 0.874 (3 \text{ s.f.})$	M1 for probability using	
		correct tail $A \perp C \land O$ (but ET 44.5 or	
		omitted CC)	
(:)	(A) Switchle arguments for/against each accumption		
	(A) Suitable arguments for/against each assumption:		
	(B) Suitable arguments for/against each assumption:	E1, E1	4
			16
			10

(i)	H ₀ : no a H ₁ : som	ssociation be association	tween age gi between age	oup and sex;	ex:		B1 (in context)	
	F	rnected	Se	ex	Row]		
		spected	Male	Female	totals			
		Under 40	81.84	42.16	124			
	Age	40 - 49	73.92	38.08	112			
	Broup	50 and over	42.24	21.76	64			
	Colu	mn totals	198	102	300		M1 A1 for expected	
	Contr	ribution to statistic	Se	ex		_	M1 for valid attempt at	
			Male	Female			$(O-E)^2/E$	
		Under 40	1.713	3.325			Miden for summation	
	Age group	40 - 49	0.059	0.114			ivituep for summation	O
	Broup	50 and over	2.255	4.378				
	$X^2 = 11$.84			4		A1CAO for X^2	4
	Refer to Critical Result i There is NB if H ₀ B1or fin	value at 5% l s significant s some associa $_{0}$ H ₁ reversed, c al E1	evel = 5.991 ation betwee or 'correlation	l first	B1 for 2 deg of f B1 CAO for cv B1 dep on their cv & X^2 E1 (conclusion in context)			
(ii)	The ana 40 age g be expe The rev Thus the	lysis suggests group and less cted if there v erse is true fo ese data do su	s that there as s in the 50 an were no assoc r males. apport the sug	under would	E1 E1 E1dep (on at least one of the previous E1s)	3		
(iii)	Binomia n = 300 EITHEH $\lambda = np =$ Using ta = 1 OR: use P(X > 1)	al(300, 0.03) b, $p = 0.03$ so c: use Poisson ables: P($X \ge$ -0.8030 = 0 c: Normal appr 11.5) = P $\left(Z$ = P(Z > 0.84)	soi n approximat 12) = 1 - P .197 roximation N $> \frac{11.5 - 9}{\sqrt{8.73}}$ 6)) = 1 - 0.8		B1 CAO <i>EITHER:</i> B1 for Poisson B1dep for Poisson(9) M1 for using tables to find $1 - P(X \le 11)$ A1 <i>OR:</i> B1 for Normal B1dep for parameters M1 for using tables with correct tail (cc not required for M1) A1	5		
								18

4767

4767

Statistics 2

Question 1

(i)	x is independent, y is dependent	B1	
.,	since the values of x are chosen by the student	E1 dep	
	but the values of y are dependent on x	E1 dep	3
(ii)	$\bar{x} = 2.5, \ \bar{y} = 80.63$	B1 for \overline{x} and \overline{y} used	
	$S_{XV} = 2530.3 - 30 \times 967.6/12 = 111.3$	(SOI)	
	$b = \frac{500}{500} = \frac{25000}{00} \frac{2000}{200} \frac{2000}{12} = \frac{1100}{15} = 7.42$		
	5xx 90-50 / 12 15	M1 for attempt at gradient	
	2520.2/12 2.50, 20.62 0.275	(b)	
	OR $b = \frac{2530.5/12 - 2.30 \times 80.05}{2} = \frac{9.275}{2} = 7.42$	A1 for 7.42 cao	
	$90/12 - 2.50^2$ 1.25		
	Hence least squares regression line is:	M1 for equation of line	
	$y - \overline{y} = b(x - \overline{x})$		
	\Rightarrow y - 80.63 = 7.42(x - 2.5)	A1 FT (<i>b</i> >0) for complete	
	$\Rightarrow y = 7.42x + 62.08$	equation	5
(iii)	(A) For $x = 1.2$, predicted growth	M1 for at least one	
	$= 7.42 \times 1.2 + 62.08 = 71.0$	prediction attempted.	
	(B) For $x = 4.3$, predicted growth	A1 for both answers	
	$= 7.42 \times 4.3 + 62.08 = 94.0$	(FI their equation if b>0)	
	Valid relevant commants relating to the predictions		
	valid relevant comments relating to the predictions		
	Commont ro interpolation/avtrapolation	E1 (first comment)	
	Comment relating to the fact that $x = 4.3$ is only just		4
	beyond the existing data	E1 (second comment)	
	Comment relating to size of residuals near each		
	predicted value (need not use word 'residual')		
(iv)	$x = 3 \Rightarrow$	M1 for prediction	
()	predicted $v = 7.42 \times 3 + 62.08 = 84.3$		
	Residual = $80 - 84.3 = -4.3$	M1 for subtraction	
		A1 FT (<i>b</i> >0)	3
(v)	I his point is a long way from the regression line.	E1	
	The line may be valid for the range used in the	ET for valid in range	
	for higher concentrations, or the relationship may be	brook down' or	
	non linear	'could be non linear'	2
		or other relevant	3
		comment	
			18

PMT

4767

(i)	Binomial (94,0.1)	B1 for binomial	
		B1 dep for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small	B1, B1 Allow	
		appropriate numerical	
		ranges	2
(iii)	$\lambda = 94 \times 0.1 = 9.4$	B1 for mean	
	$0.4 9 4^4$		
	$(A) P(X = 4) = e^{-9.4} \frac{2.1}{44} = 0.0269 (3 \text{ s.f.})$	M1 for calculation or	
	4!	use of tables	
	or from tables = $0.0429 - 0.0160 = 0.0269$ cao	A1	
	(B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$	M1 for attempt to find	
		$P(X \ge 4)$	5
	= 1 - 0.0160 = 0.9840 <i>cao</i>	A1 cao	
(iv)	P(sufficient rooms throughout August)	M1	
	$= 0.9840^{31} = 0.6065$	A1 FT	2
(v)	(<i>A</i>) 31 × 94 = 2914	B1 for binomial	
	Binomial (2914,0.1)	B1 dep, for parameters	2
	(B)Use Normal approx with	B1	
	$\mu = np = 2914 \times 0.1 = 291.4$		
	$\sigma^2 = npq = 2914 \times 0.1 \times 0.9 = 262.26$	B1	
		D4 fee en time itere	
	$P(X \le 200.5) = P\left(7 \le \frac{300.5 - 291.4}{2}\right)$	B1 for continuity corr.	
	$\Gamma(\Lambda = 300.5) = \Gamma\left[2 \ge \frac{1}{\sqrt{262.26}}\right]$	IVIT for probability	
	$- P(7 < 0.5610) - \phi(0.5610) - 0.7130$	using correct tail	5
	$= F(Z = 0.5019) = \Psi(0.5019) = 0.7150$	A1 cao , (but F1 wrong	
		or omitted CC)	
			18

(i)	$X \sim N(56, 6.5^2)$		
	$P(52.5 < X < 57.5) = P\left(\frac{52.5 - 56}{6.5} < Z < \frac{57.5 - 56}{6.5}\right)$	M1 for standardizing	
	= P(-0.538 < Z < 0.231)	A1 for -0.538 and 0.231	
	$= \Phi(0.231) - (1 - \Phi(0.538))$ = 0.5914 - (1 - 0.7046) = 0.5914 - 0.2954	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	
	= 0.2960 (4 s.f.) <i>or</i> 0.296 (to 3 s.f.)		4
(ii)	P(5-year-old < 62) = P $\left(Z < \frac{62 - 56}{6.5}\right)$		
	= Φ(0.923) = 0.8220	B1 for 0.8220 or 0.1780	
	P(young adult < 62) = P $\left(Z < \frac{62 - 68}{10}\right)$	B1 for 0.2743 or 0.7257	
	= Φ(−0.6) = 1 − 0.7257 = 0.2743 P(One over, one under)	M1 for either product	
	= 0.8220 × 0.7257 + 0.1780 × 0.2743 = 0.645	M1 for sum of both products A1 CAO	5
(iii)	0.07	G1 for shape	
	0.06	G1 for means shown	
	0.05	explicitly or by scale	
	0.04	G1 for lower max height	
	0.03	in young adults	
	0.02	in young adults	4
	0.01		
(iv)	Y ~ N(82,σ ²) From tables Φ ⁻¹ (0.88) = 1.175	B1 for 1 175 seen	
(,	$\frac{62-82}{62-82} = -1.175$	M1 for equation in σ	
	σ = -1.175 σ	with z-value	
	-20 = -1.1750	of LH tail	4
	σ = 17.0	A1 cao	
			17

H ₀ : no a	ssociation	between	sex an	d subject;	act.	B1	
111. 3011	6 83500181						
OBS	Math	English	Both	Neither	Row		
	S				sum		
Male	38	19	6	32	95		
Female	9 42	55	9	49	155		
Col	80	74	15	81	250		
sum						M1 A2 for expected	
EVD	Mothe	Englich	Both	Noithor	Bow	(allow A1 for at least	
	Maths	English	Boun	Neithei	RUW	one row or column	
Male	30.40	28.12	5 70	30.78	5um 05	correct)	
Female	49.60	45.88	9.70	50.70	155	- / /	
Col	, <u>+0.00</u> 80	74	15	81	250	M1 for valid attempt at	
sum	00	14	10	0.	200	(O-E) ² /E	
Juni							
						NB These M1 A1 marks	
CONT	Math	is Eng	glish	Both	Neither	correct final value of X^2	
Male	1.90	0 2.9	958	0.016	0.048		
Female	9 1.16	5 1.8	313	0.010	0.030	M1 for summation M_{1} and for M_{2}^{2}	
Critical N Result is There is associat	value at 5% significan evidence ion betwee	6 level = 7 t to sugges en sex ar	7.815 st that t id subje	here is so	me	B1 E1	
first B1 o	r final E1	,					
$H_0: \mu = 0$	57.4; H₁: ₁	u >67.4	00050	of the new	ulation of	B1 for both correct	
students	taught wi	th the new	w metho	od.		B1 for definition of μ	
Test sta	tistic = $\frac{68}{2}$	$\frac{.3-67.4}{0.4}$	$=\frac{0.9}{2.57}$			M1	
	8. = 0.3	9/ √12 5	2.37			A1 cao	
10% lev	el 1 tailed	critical va	lue of z	2 = 1.282		B1 for 1.282	
There is	insufficier	nt evidence nt evidence	ce to rej	ect H ₀ nclude th:	at the mean	M1 for comparison	
score is	increased	by the ne	ew teac	hing meth	iod.	A1 for conclusion in words and in context	

4767

4767 Statistics 2

Question 1

4767

QUE			
(i)	EITHER: $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 880.1 - \frac{1}{48} \times 781.3 \times 57.8$	M1 for method for S_{xy}	
	= -60.72	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 14055 - \frac{1}{48} \times 781.3^2 = 1337.7$	A1 for at least one of S_{xy} , S_{xx} , S_{yy} . correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 106.3 - \frac{1}{48} \times 57.8^2 = 36.70$ S = -60.72	M1 for structure of <i>r</i> A1 CAO	
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-00.72}{\sqrt{1337.7 \times 36.70}} = -0.274$	(-0.27 to -0.28) M1 for method for cov (x,y)	
	OR: $cov(x,y) = \frac{\sum xy}{n} - \frac{1}{xy} = 880.1/48 - 16.28 \times 1.204$	M1 for method for at least	
	= -1.265 rmsd(x) = $\sqrt{\frac{S_{xx}}{x}} = \sqrt{(1337.7/48)} = \sqrt{27.87} = 5.279$	one msd A1 for at least one of	
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(36.70/48)} = \sqrt{0.7646} = 0.8744$	M1 for structure of r A1 CAO	5
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{-1.265}{5.279 \times 0.8744} = -0.274$	(-0.27 to -0.28)	
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho < 0$ (one-tailed test)	B1 for H_0 , H_1 in symbols	
	where ρ is the population correlation coefficient	B1 for defining ρ	
	For <i>n</i> = 48, 5% critical value = 0.2403	B1FT for critical value	
	Since $ - 0.274 > 0.2403$ we can reject H ₀ :	M1 for sensible comparison leading to a	6
	There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	conclusion A1 for result (FT r<0) E1 FT for conclusion in words	
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	 Correlation does not imply causation There could be a third factor increased growth could cause lower spending. 	E1 E1 E1	
	Allow any sensible alternatives, including example of a possible third factor.		3
(v)	Advantage – less effort or cost	E1	
	likely to detect any correlation which may exist)	E1	2
1			18

(i)	(A) $P(X=2) = e^{-0.37} \frac{0.37^2}{2!} = 0.0473$	M1 A1 (2 s.f.)	
	(<i>B</i>) $P(X > 2)$		
	$= 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$	M1 for $P(X = 1)$ and P(X = 0) M1 for complete method A1 NB Answer given	5
	= 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064		
(ii)	P(At most one day more than 2) = $\binom{30}{1} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ = 0.1594 + 0.8248 = 0.9842	M1 for coefficient M1 for 0.9936 ²⁹ × 0.0064 M1 for 0.993630 A1 CAO (min 2sf)	4
(iii)	$\lambda = 0.37 \times 10 = 3.7$	B1 for mean (SOI)	
	P(X > 8) = 1 - 0.9863	M1 for probability	3
	= 0.0137	A1 CAO	
(iv)	Mean no. per 1000ml = $200 \times 0.37 = 74$ Using Normal approx. to the Poisson, $X \sim N(74, 74)$	B1 for Normal approx. with correct parameters (SOI)	
	$P(X > 90) = P\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$	B1 for continuity corr.	4
	$= P(Z > 1.918) = 1 - \Phi(1.918)$	M1 for probability using correct tail	
	= 1 - 0.9724 = 0.0276	A1 CAO (min 2 s.f.), (but FT wrong or omitted CC)	
(v)	P(questionable) = $0.0064 \times 0.0137 \times 0.0276$ - 2.42 × 10 ⁻⁶	M1	
	- 2.72 ^ 10	A1 CAO	2
			18

Ques			
(i)	$X \sim N(27500,4000^2)$		
	$P(X > 25000) = P\left(Z > \frac{25000 - 27500}{4000}\right)$	M1 for standardising	
	= P(Z > -0.625)	A1 for -0.625	
	$= \Phi(0.625) = 0.7340 (3 \text{ s.f.})$	M1 <i>dep</i> for correct tail A1CAO (must include use	4
		of differences)	-
(ii)	P(7 of 10 last more than 25000)		
	$= \begin{pmatrix} 10 \\ 10 \end{pmatrix} \times 0.7340^7 \times 0.2660^3 = 0.2592$	M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$	
		A1 FT (min 2sf)	3
(iii)	From tables Φ^{-1} (0.99) = 2.326		
	k - 27500 2 226	B1 for 2.326 seen	
		negative z-value	
	$x = 27500 = 2326 \times 4000 = 18200$		3
		A1 CAO for awrt 18200	
(iv)	H_0 : $\mu = 27500$: H_1 : $\mu > 27500$	B1 for use of 27500	
()	Where μ denotes the mean lifetime of the new tyres.	B1 for both correct	
		B1 for definition of μ	3
(v)	T est statistic 28630 - 27500 1130	M1 must include $\sqrt{15}$	
	$\frac{1000}{4000} = \frac{1000}{4000} = \frac{1000}{1000} = \frac{1000}{1000}$	A1 FT	
		B1 for 1.645	
	5% level 1 tailed critical value of $z = 1.645$	M1 dep for a sensible	
	There is not sufficient evidence to reject H_0	comparison leading to a conclusion	
	There is insufficient evidence to conclude that the new tyres last longer.	A1 for conclusion in words in context	5
			18

4767

PMT

Ques	Stion 4		
(i)	H_0 : no association between location and species. H_1 : some association between location and species.	B1 for both	1
(ii)	Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773	M1 A1 M1 for valid attempt at (O-E) ² /E A1 NB Answer given	4
(iii)	Refer to χ_4^2 Critical value at 5% level = 9.488 Test statistic X^2 = 32.85 Result is significant There appears to be some association between location and species	 B1 for 4 deg of f(seen) B1 CAO for cv M1 Sensible comparison, using 32.85, leading to a conclusion A1 for correct conclusion (FT their c.v.) E1 conclusion in context 	5
	NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final E1		
(iv)	 Limpets appear to be distributed as expected throughout all locations. Mussels are much more frequent in exposed locations and much less in pools than expected. Other shellfish are less frequent in exposed locations and more frequent in pools than expected. 	E1 E1, E1 E1, E1	5
(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3
			18

4767 Statistics 2

(i)	x	18	43	52	94	98	206	784	1530	M1 for attempt at ranking	
	у	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64	(allow all ranks reversed)	
	Rank <i>x</i>	1	2	3	4	5	6	7	8		
	Rank y	2	1	3	6	4	7	5	8		
	d	-1	1	0	-2	1	-1	2	0	M1 for d^2	
	d^2	1	1	0	4	1	1	4	0	A 1 for $\Sigma d^2 - 12$	
										M1 for method for r_s	
		6Σ	d^2	6	×12						
	$r_s = 1$	$-\frac{02}{n(n^2)}$	$\frac{1}{1}$	$=1-\frac{0}{8}$	$\times 63$					A1 f.t. for $ r_s < 1$	5
	$n(n^1)$ 8×63									NB No ranking scores zero	
	= 0	.857 (1	to 3 s.f	E.) [a							
(ii)											
	H ₀ : no as	sociat	ion bet	ween	X and	Y in th	e popu	lation		B1 for H ₀	
	H ₁ : some	e assoc	iation	betwee	en X ai	nd Y in	the po	opulati	on	B1 for H ₁	
	Two tail	test cri	tical v	alue at	5% le	vel is (0.7381			B1 for population SOI	
	Since 0.857> 0. 7381, there is sufficient evidence to reject									NB $H_0 H_1 \underline{not}$ ito ρ	
	H_0 ,									B1 for ± 0.7381	
	association between population size X and average walking								M1 for sensible		
	speed Y.								comparison with c.v.,		
									provided $ r_s < 1$	6	
									Al for conclusion in	U	
										sensible cv	
(iii)	$\overline{t} = 45, \overline{v}$	v = 2.2	2367							B1 for \overline{t} and \overline{w} used	
	Stry 584.6 - 270 \times 13.42/6 - 19.3								(SOI)		
	$b = \frac{500}{5tt} = \frac{564.0 - 270 \times 15.4270}{12000 - 270^2/6} = \frac{-19.5}{1750} = -0.011$							M1 for attempt at			
	$5n^{-1300-27070}$ 1750^{-1750} $584.6/6-45 \times 2.2367$ -3.218								gradient (b)		
	OR $b = 6000000000000000000000000000000000000$										
	hence least squares regression line is:								A1 CAO for -0.011		
	$w - \overline{w} = b(t - \overline{t})$							M1 for equation of line			
	$\Rightarrow w - 2.2367 = -0.011(t - 45)$							A1 FT for complete			
		$\Rightarrow w =$	-0.01	1t+2	.73		•			equation	
	_	, , , ,	5.01								5

(iv)	(A)	For $t = 80$, predicted speed = -0.011 × 80 + 2.73 = 1.85	M1 A1 FT provided b < 0	
	(B) NB All	The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly. low E1 for comment about extrapolation not in context	E1 extrapolation o.e. E1 sensible contextual comment	4
			TOTAL	20

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \ge 1) = 1 - \hat{e} \frac{0.5^0}{0!} = 1 - 0.6065 = 0.3935$ or from tables = 1 - 0.6065 = 0.3935	M1 for correct calculation or correct use of tables A1	2
(iv)	P(9 of 20 contain at least one) = $\binom{20}{9} \times 0.3935^9 \times 0.6065^{11}$ = 0.1552	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$, p from part (iii) A1	3
(v)	Expected number = $20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean $= \frac{\Sigma x f}{n} = \frac{7+4}{20} = \frac{11}{20} = 0.55$	B1 for mean	
	Variance = $\frac{1}{n-1} \left(\Sigma f x^2 - n \overline{x}^2 \right)$	M1 for calculation	
	$=\frac{1}{19}(15-20\times0.55^2)=0.471$	A1 CAO	3
(vii)	Yes, since the mean is close to the variance,	B1	
	and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9.	E1 for sensible comparison B1 for observed frequency = 7 + 2 = 9	3
		TOTAL	18

		TOTAL	17
	$b = 100.55 + 1.90 \times 25.05 = 210.8$	[Allow other correct intervals]	4
	$a = 166.55 - 1.96 \times 25.63 = 116.3$	A1	
(iii)	$\Phi^{-1}(0.975) = 1.96$	B1 for ± 1.96 seen M1 for either equation	
	$\sigma = 25.63, \mu = 166.55$	A1 CAO for both	4
	$40 = 1.5604 \sigma$	M1 dep for attempt to solve two equations	
	$140 = \mu - 1.036 \sigma$	Y VAIUC	
	$180 = \mu + 0.5244 \sigma$	equation in μ and σ and Φ^{-1} value	
	$\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$	M1 for at least one	
(ii)	From tables,	B1 for 0.5244 or ±1.036	
	$k = 115.3 - 1.282 \times 21.9 = 87.22$	A1 CAO	3
	$\frac{k-115.3}{21.9} = -1.282$	negative z-value	
	(<i>C</i>) From tables $\Phi^{-1}(0.1) = -1.282$	B1 for ±1.282 seen	
	= 0.1621		3
	$= \Phi(0.6986) - \Phi(0.2420)$ = 0.7577 - 0.5956	$calc^n$	
	= P(-0.6986 < Z < -0.2420)	M1 for correct structure in	
	$P\left(\frac{100-115.5}{21.9} < Z < \frac{110-115.5}{21.9}\right)$	100 & 110	
	$\begin{array}{c} (B) P(100 < X < 110) = \\ (100 - 115 3 - 110 - 115 3) \end{array}$		5
	$= \Phi(0.2146) = 0.5849$	include use of difference column)	3
	= P(Z < 0.2146)	A1 for $z = 0.2146$	
(i)	(A) $P(X < 120) = P\left(Z < \frac{120 - 115.3}{21.0}\right)$	M1 for standardizing	
January 2009

					TOTAL	17
There is insufficient larger.	evidence to	s are	A1 for fully correct conclusion in words in context	5		
1% level 1 tailed crit 1.830 < 2.326 so not There is not sufficien	ical value of significant.		M1 (dep on first M1) for sensible comparison leading to a conclusion			
Test statistic = $\frac{49.2}{8.5/}$	$\frac{-47}{\sqrt{50}} = \frac{2.2}{1.202}$		M1 correct denominator A1			
Result is not significate There is not enough association between the NB if $H_0 H_1$ reversed, of B1or final A1	ant n evidence to reported grov or 'correlation'	some irst	M1 A1	1		
Refer to χ_4 Critical value at 5% I	level = 9.488		B1 for 4 d.o.f. B1 CAO for cv			
$X^2 = 8.69$					M1 for summation A1 for X^2 CAO	
Coriander Aster Fennel	0.0008 1.2002 1.2955	0.3772 0.6497 0.0226	0.4899 3.4172 1.2344		NIT for valid attempt at $(O-E)^2/E$ A1 for all correct NB These M1A1 marks cannot be implied by a correct final value of X^2	
Fennel	10.34	21.31	15.35		one row or column correct)	
Aster	10.56	21.76	15.68		(allow A1 for at least	
EXPECTED Coriander	<u>Good</u> 12.10	Average 24.93	Poor 17.97		values (to 2 dp)	
H ₁ : some association	between gro	wth and type	of plant;			

4767 Statistics 2

(i)	EITHER:		
()	$S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 316345 - \frac{1}{50} \times 2331.3 \times 6724.3$	M1 for method for S_{xy}	
	= 2817.8	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 111984 - \frac{1}{50} \times 2331.3^2 = 3284.8$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 921361 - \frac{1}{50} \times 6724.3^2 = 17036.8$	M1 for structure of <i>r</i> A1 (AWRT 0.38)	
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{2817.8}{\sqrt{3284.8 \times 17036.8}} = 0.377$	M1 for method for cov	
	OR: $\sum xy = -$	(<i>x</i> , <i>y</i>)	
	$\operatorname{cov} (x, y) = \frac{2}{n} - xy = 316345/50 - 46.626 \times 134.486$ $= 56.356$	M1 for method for at least one msd	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(3284.8/50)} = \sqrt{65.696} = 8.105$	A1 for at least on of cov(<i>x</i> , <i>y</i>), rmsd(<i>x</i>) or rmsd(<i>y</i>) correct	5
	rmsd(y) = $\sqrt{\frac{3_{yy}}{n}} = \sqrt{(17036.8/50)} = \sqrt{340.736} = 18.459$	M1 for structure of r	
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{56.356}{8.105 \times 18.459} = 0.377$	A1 (AWRT 0.38)	
/ii)	H: 0-0	B1 for H ₂ H ₂ in	
(")	$H_1: \rho \neq 0$ (two-tailed test)	symbols	
	where ρ is the population correlation coefficient	B1 for defining <i>p</i>	
	For $n = 50$, 5% critical value = 0.2787	BTFT for critical value	
	Since 0.377 > 0.2787 we can reject H_0 :	M1 for sensible comparison leading to	
	There is sufficient evidence at the 5% level to suggest that	a conclusion	6
	there is correlation between oil price and share cost	B1 FT for conclusion in context	
(iii)	Population	B1	
	The scatter diagram has a roughly elliptical shape, hence the assumption is justified.	B1 elliptical shape E1 conclusion	3
(iv)	Because the alternative hypothesis should be decided without referring to the sample data and there is no	E1	
	suggestion that the correlation should be positive rather than negative.	E1	2
		TOTAL	16

Question	2
----------	---

	Meteors are seen randomly and independently	B1	
(i)	There is a uniform (mean) rate of occurrence of meteor		
	sightings	B1	2
(ii)	(A) Either $P(X = 1) = 0.6268 - 0.2725 = 0.3543$	M1 for appropriate use	
	Or $P(X = 1) = e^{i} \frac{1.3^{1}}{2} = 0.3543$	A1	
	! (B) Using tables: P(X>4) - 1 - P(X < 3)	M1 for appropriate	
	-1 - 0.9569	probability calculation	4
	= 0.0431	A1	
	$\lambda = 10 \times 1.3 = 13$	B1 for mean	
(iii)		M1 for calculation	
	$P(X = 10) = e^{1} \frac{13^{10}}{101} = 0.0859$	A1 CAO	3
(iv)	10!		
. ,	Mean no. per hour = $60 \times 1.3 = 78$	B1 for Normal approx.	
	Normal approx. to the Poisson, $X \sim N(78, 78)$	B1 for correct	
	(99.5 - 78)	parameters (SOI)	
	$P(X \ge 100) = P\left(Z > \frac{1}{\sqrt{78}}\right)$	B1 for continuity corr.	
	$-P(7 > 2434) - 1 - \Phi(2434)$	M1 for correct Normal	5
		probability calculation	
	= 1 - 0.9926 = 0.0074	A1 CAO. (but FT wrong	
		or omitted CC)	
(v)	Either	M1 formation of	
	P(At least one) = 1 - $e^{\lambda} \frac{\lambda^0}{2}$ = 1 - $e^{\lambda} > 0.99$	equation/inequality using	
		$P(X \ge 1) = 1 - P(X = 0)$	
	$e^{\lambda} \leq 0.01$	A1 for correct	
	$-\lambda \le \ln 0.01$, so $\lambda \ge 4.605$	equation/inequality	
	1.3 <i>t</i> ≥ 4.605, so <i>t</i> ≥ 3.54	M1 for logs A1 for 3 54	
	Answer $t = 4$	A1 for <i>t</i> (correctly	
	Or	justified)	
	$t = 1, \lambda = 1.3, P(At least one) = 1 - e^{1.3} = 0.7275$	M1 at least one trial with	
	$t = 2, \lambda = 2.6, P(At least one) = 1 - e^{2.6} = 0.9257$	A1 correct probability.	5
	$t = 3, \lambda = 3.9, P(At \text{ least one}) = 1 - e^{3.9} = 0.9798$	M1 trial with either $t = 3$	
	$t = 4, \lambda = 5.2, P(At least one) = 1 - e^{5.2} = 0.9944$	or $t = 4$ A1 correct probability of	
	Answer $t = 4$	t = 3 and t = 4	
		A1 for t	19
			15

(i)	$X \sim N(1720.90^2)$		
	$P(X < 1700) = P\left(Z < \frac{1700 - 1720}{90}\right)$	M1 for standardising A1	
	= P(Z < -0.2222) = $\Phi(-0.2222) = 1 - \Phi(0.2222)$	M1 use of tables (correct tail)	
	= 1 - 0.5879	À1CAO	
	= 0.4121	NB ANSWER GIVEN	4
(ii)	P(2 of 4 below 1700)		
	$= \binom{4}{2} \times 0.4121^2 \times 0.5879^2 = 0.3522$	M1 for coefficient M1 for $0.4121^2 \times 0.5879^2$ A1 FT (min 2sf)	3
(iii)	Normal approx with	B1	
	$\mu = np = 40 \times 0.4121 = 16.48$	54	
	$\sigma^2 = npq = 40 \times 0.4121 \times 0.5879 = 9.691$	B1 for correct continuity	
	(105, 1648)	corr.	
	$P(X \ge 20) = P \left Z \ge \frac{19.3 - 10.48}{\sqrt{2001}} \right $		5
	$(\sqrt{9.691})$	M1 for correct Normal	
	$= P(Z \ge 0.9701) = 1 - \Psi(0.9701)$	using correct tail	
	= 1 - 0.8340 = 0.1660	A1 CAO, (but FT wrong	
		or omitted CC)	
(1.)	11	D4	
(1V)	Π_0 : $\mu = 1720$; H ₄ is of this form since the consumer organisation	F1	
	suspects that the mean is below 1720		3
	μ denotes the mean intensity of 25 Watt low energy bulbs	B1 for definition of μ	
()	made by this manufacturer.	M4 must in shude . 00	
(*)	Test statistic = $\frac{1703 - 1720}{1000} = \frac{-17}{20000}$	WIT MUST INCIUDE V20	
	$90/\sqrt{20}$ 20.12	A1FT	
	= - 0.8447		
	Lower 5% level 1 tailed critical value of $z = -1.645$	B1 for –1.645 No FT	
		Must be –1.645 unless	
		it is clear that absolute	
	-0.8447 > -1.645 so not significant	values are being used.	
	There is not sufficient evidence to reject H ₀	M1 for sensible	5
	···· · · · · · · · · · · · · · · · · ·	a conclusion	5
	There is in a first with a statement of the state of the state	FT only candidate's test	
	intensity of bulbs made by this manufacturer is less than	statistic	
	1720	A1 for conclusion in	
		words in context	
		TOTAL	20

Question 4

H ₀ : no association b	B1					
H ₁ : some associatio EXPECTED Hatchback Saloon People carrier 4WD Sports car CONTRIBUTION Hatchback Saloon People carrier 4WD Sports car $\chi^2 = 22.62$ Refer to χ_4^2 Critical value at 5% 22.62 > 9.488 Result is significant There is evidence association between NB if H ₀ H ₁ reverse	Male 83.16 70.56 51.66 17.01 29.61 Male 1.98 0.59 3.61 0.23 1.96	Female 48.84 41.44 30.34 9.99 17.39 Female 3.38 1.00 6.15 0.40 3.33	M1 A2 for expected values (to 2 dp) (allow A1 for at least one row or colu- correct) M1 for valid attempt (O-E) ² /E A1 for all correct NB These M1A1 main cannot be implied by a correct final value of X ² M1 for summation A1 for X ² CAO B1 for 4 deg of f B1 cAO for cv M1 sensible comparison leading to conclusion		n 3 12	
 In hatchbacks, male drivers are more frequent than expected. In saloons, male drivers are slightly more frequent than expected. In people carriers, female drivers are much more frequent than expected. In 4WDs the numbers are roughly as expected In sports cars, female drivers are more frequent than expected. 				E1 E1 E1 E1 E1 E1	5	
	-			TOTAL	17	

Deleted: ¶

4767 Statistics 2

_	T			1
	(i)		G1 For values of <i>a</i> G1 for values of <i>t</i> G1 for axes	[3]
	(ii)	<i>a</i> is independent, t is dependent since the values of <i>a</i> are not subject to random variation, but are determined by the runways which the pilot chooses, whereas the values of t are subject to random variation	B1 E1dep	[2]
	(iii)	$\bar{a} = 900, \bar{t} = 855.2$ $b = \frac{S_{at}}{S_{aa}} = \frac{6037800 - 5987 \times 6300/7}{8190000 - 6300^2/7} = \frac{649500}{2520000} = 0.258$ OR $b = \frac{6037800/7 - 855.29 \times 900}{8190000/7 - 900^2} = \frac{92785}{360000} = 0.258$	B1 for \bar{a} and \bar{t} used (SOI) M1 for attempt at gradient (b) A1 for 0.258 cao	[3]
		hence least squares regression line is: $t - \overline{t} = b(a - \overline{a})$ $\Rightarrow t - 855.29 = 0.258 (a - 900)$ $\Rightarrow t = 0.258a + 623$	M1 for equation of line A1 FT for complete equation	[5]
	(iv)	(A) For $a = 800$, predicted take–off distance = $0.258 \times 800 + 623 = 829$	M1 for at least one prediction attempted	
		(B) For $a = 2500$, predicted take–off distance = $0.258 \times 2500 + 623 = 1268$	A1 for both answers (FT their equation if <i>b</i> >0)	
		Valid relevant comments relating to the predictions such as: First prediction is interpolation so should be reasonable Second prediction is extrapolation and may not be reliable	E1 (first comment) E1 (second comment)	[4]
	(v)	$a = 1200 \Rightarrow$ predicted $t = 0.258 \times 1200 + 623 = 933$ Residual = $923 - 933 = -10$ The residual is negative because the observed value is less than the predicted value.	M1 for prediction M1 for subtraction A1 FT E1 Total	[4] [19]

6	(1)			
2	(i)	P(1 of 10 is faulty)	MI for coefficient	
		$-(10) \times 0.02^{1} \times 0.08^{9} = 0.1667$	M1 for probabilities	
		$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} \times 0.02 \times 0.98 = 0.1007$	A1	[3]
			D (D (
	(ii)	<i>n</i> is large and <i>p</i> is small	BI, BI	
			Allow appropriate	
			numerical ranges	[2]
	(:::)	1 150 - 0.02 2	D1 for moon (agi)	
	(III)	$\lambda = 150 \times 0.02 = 5$	BI IOI IIIeali (SOI)	
		(A) $P(X-0) = \tilde{e}^{-3} \frac{3^{\circ}}{2} = 0.0498 (3 \text{ s f})$		
		$\begin{array}{c} (n) & 1 (n-0) = 0 \\ 0! & 0! \end{array}$	M1 for calculation or	
		or from tables $= 0.0498$	use of tables	
			AI	[3]
		(B) Expected number = 3		
			B1 expected	
		Using tables: $P(X > 3) - 1 - P(X < 3)$	no = 3 (soi)	
		-1 0.6472 - 0.3528	M1	
		= 1 - 0.0472 = 0.5528	A1	[3]
				[]
	(iv)	(A) $Binomial(2000, 0.02)$	B1 for binomial	
			B1 for parameters	[2]
		(B) Use Normal approx with	B1	
		$\mu = np = 2000 \times 0.02 = 40$	B1	
		$\sigma^2 = npq = 2000 \times 0.02 \times 0.98 = 39.2$	B1 for continuity	
			corr.	
		(505-40)	M1 for probability	
		$P(X \le 50) = P Z \le \frac{50.5 - 40}{\sqrt{52.5}} $	using correct tail	
		\ √39.2 <i>)</i>	A1 CAO	[5]
		$= P(Z \le 1.677) = \Phi(1.677) = 0.9532$		[3]
		NP Doisson approximation also acceptable for full marks		
		nd roisson approximation also acceptable for full marks	T_4-1	Г10 1
			I otal	[10]

January 2010

3	(i)	(A) $P(X < 50)$		
		$= P\left(Z < \frac{50 - 45.3}{11.5}\right)$ = P(Z < 0.4087) = $\Phi(0.4087)$ = 0.6585	M1 for standardisingM1 for correct structure of probability calc'A1 CAO inc use of diff tables	[3]
		$(B) \qquad P(45.3 < X < 50) \\= 0.6585 - 0.5$	NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only M1	
		=0.1585	A1	[2]
	(ii)	From tables $\Phi^{-1}(0.9) = 1.282$ k - 45.3 = 1.282	B1 for 1.282 seen	
		$\frac{11.5}{11.5}$	M1 for equation in k	
		$k = 45.3 + 1.282 \times 11.5 = 60.0$	A1 CAO	[3]
	(iii)	P(score = 111) = P(110.5 < Y < 111.5) = P(110.5 - 100 < Z < 111.5 - 100)	B1 for both continuity corrections	
		$-\mathbf{r}\left(\frac{15}{15} < 2 < \frac{15}{15}\right)$	M1 for standardising	
		$= P(0.7 < Z < 0.7667) = \Phi(0.7667) - \Phi(0.7)$	M1 for correct structure of probability calc'	
		$= 0.7784 - 0.7580 \\= 0.0204$	A1 CAO	[4]
	(iv)	From tables, $\Phi^{-1}(0.3) = -0.5244, \Phi^{-1}(0.8) = 0.8416$	B1 for 0.5244 or 0.8416 seen	
		$22 = \mu + 0.8416 \sigma$	equation in z μ & σ	
		$15 = \mu - 0.5244 \sigma$	A1 for both correct	
		$7 = 1.3660 \sigma$	M1 for attempt to solve	
		$\sigma = 5.124, \mu = 17.69$	equations	
			A1 CAO for both	[5]
			TOTAL	[17]

Mark Scheme

January 2010

			D16 1 4	543
4	(1)	H ₀ : no association between size of business and recycling service used. H ₁ : some association between size of business and recycling	B1 for both	[1]
		service used.		
	(ii)	Expected frequency = $78/285 \times 180 = 49.2632$	M1 A1	
		= (32 - 49.2032) / 49.2032 $= 0.1520$	$(O-E)^2/E$	
			Al NB Answer given	F 41
			Allow 0.152	[4]
	(iii)	Test statistic $X^2 = 0.6041$	B1	
		Refer to \mathcal{X}_2^2	B1 for 2 deg of f(seen)	
		Critical value at 5% level = 5.991	B1 CAO for cv	
		Result is not significant	B1 for not significant	[5]
		There is no evidence to suggest any association between size	E1	
		of business and recycling service used. NB if H_0 H_1 reversed, or 'correlation' mentioned in part (i).		
		do not award B1in part (i) or E1 in part (iii).		
	(iv)	H ₀ : $\mu = 32.8$: H ₁ : $\mu < 32.8$	B1 for use of 32.8	
	()	Where μ denotes the population mean weight of rubbish in the	B1 for both correct	
		bins. $30.9 - 32.8 = 1.9$	B1 for definition of μ	
		Test statistic = $\frac{30.9 - 32.8}{3.4 / \sqrt{50}} = -\frac{1.9}{0.4808} = -3.951$	M1 must include $\sqrt{50}$	
		5% level 1 tailed critical value of $z = -1.645$	B1 for ±1.645	
		-3.951 < -1.645 so significant.	M1 for sensible	
		There is sufficient evidence to reject H ₀	comparison leading	
		There is evidence to suggest that the weight of rubbish in	A1 for conclusion in	
		dustbins has been reduced.	words in context	[8]
			TOTAL	[18]

(i)	x	6	17	9	20	13	15	11	14		M1 for attempt at	
	у	6	13	10	11	9	7	12	15		ranking (allow all	
	Rank <i>x</i>	8	2	7	1	5	3	6	4		ranks reversed)	
	Rank y	8	2	5	4	6	7	3	1		M1 for J^2	
	d	0	0	2	-3	-1	-4	3	3		NIT for a	
	d^2	0	0	4	9	1	16	9	9			
	$\Sigma d^2 = 48$										A1 CAO for Σd^2	
	$r_s = 1$	$-\frac{6\Sigma}{n(n^2)}$	$\frac{2d^2}{2}$ =	M1 for method for r_s								
	= 0	n(n).429 (-1) (to 3 s	o .f.) [allow	0.43	to 2 s.	f.]			A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)												
	H ₀ : no as	ssocia	tion b	etwee	n X aı	nd Y in	n the p	oopula	tion		B1 for H ₀	
	H ₁ : some	e posi	tive as	ssocia	tion b	etwee	n X ar	nd Y in	the		B1 for H ₁	
	populatio	on									B1 for population SOI	3
											NB H ₀ H ₁ not ito ρ	
	One tail t	test cr	itical	value	at 5%	level	is 0.6	429			B1 for ± 0.6429	
	Since $0.429 < 0.6429$, there is insufficient evidence to reject H ₀ ,									M1 for sensible comparison with c.v., provided that r < 1		
	i.e. conclude that there is not enough evidence to show positive association between the two judges' scores.										A1 for conclusion in context f.t. their r_s and sensible cv	3
(iii)	A bivaria	ite No	ormal o	distrib	ution	is req	uired.				B1	
	Scatter d	iagrar	n.								G1 labelled axes	
	Suitable	discus	ssion								E1 E1	5
											TOTAL	16

	Counts have a uniform avanage note of a country of	D 1	•
	Counts have a uniform average rate of occurrence	EI	2
(1)	All counts are independent	F1	
(ii)	An counts are independent		
(11)	Variance -34	B1	
	Variance – 3.4		1
	(A) Fither $P(X = 3) = 0.5584 - 0.3397 = 0.2187$	M1 for use of tables or	
(iii)	(1) Dimer 1(1-3) = 0.3301 0.3337 = 0.2107	calculation	
()	$Or P(X=3) = e^{-3.4} \frac{3.4}{21} = 0.2186$	A1	2
	5! (B) Using tables: $P(Y > 2) = 1 P(Y < 2)$	$\mathbf{M} = 1 \mathbf{D} (\mathbf{M} \neq 0)$	2
	(B) Using tables: $P(X \ge 3) = 1 - P(X \le 2)$	M1 for 1 - $P(X \le 2)$	
	= 1 - 0.3397	M1 correct use of	
		Poisson tables	3
	= 0.6603	A1	
(iv)	$\lambda = 12 \times 3.4 = 40.8$	B1 for mean	
	40 840	M1 for calculation	
	$P(X = 40) = e^{-40.8} \frac{40.8}{101} = 0.0625$	A1	3
	40!		
(
(•)	Mean no, per hour = $12 \times 3.4 - 40.8$		
	We all no. per noul $= 12 \times 3.4 = 40.8$	B1 for Normal approx.	
	Using Normal approx. to the Poisson,	B1 for correct	
	<i>X</i> ~ N(40.8, 40.8)	parameters (SOI)	
	(395-408)	B1 for correct	
	$P(X \ge 40) = P \left Z > \frac{59.5 - 40.8}{\sqrt{10.2}} \right $	continuity corr.	
	$(\sqrt{40.8})$		
	$= P(Z > -0.2035) = \Phi(0.2035)$	M1 for probability	
	= 0.5806	using correct tail	5
		A1 CAO (3 s.f.)	
	Overall mean $= 4.8$	B1 for 4.8	
(vi)	$P(X \ge 8) = 1 - P(X \le 7)$	M1	
	= 1 - 0.8867 = 0.1133	A1	
			3
		TOTAL	19
1			1

Zui		1	
(i)	(A) $P(X < 65) =$	M1 for standardizing	
	$P\left(Z < \frac{0.5 - 0.5}{5.2}\right)$		
	= P(Z < 0.3846)	M1 for structure	
	$= \Phi(0.3846) = 0.6497$	A1 CAO (min 3 s.f.), NB When a candidate's answers	
		suggest that (s)he appears to have neglected to use the difference column	3
	(60-63 65-63)	of the Normal distribution tables penalise the first occurrence only	
	(B) $P(60 < X < 65) = P\left(\frac{60 - 65}{52} < Z < \frac{65 - 65}{52}\right)$	M1 for standardizing	
	= P(-0.5769 < Z < 0.3846)	both	
	$=\Phi(0.3846) - (1 - \Phi(0.5769))$	M1 for correct	
	= 0.6497 - (1 - 0.7181)	structure	
	= 0.36/8	A1 CAO 3s f	3
			3
(ii)	P(All 5 between 60 and 65)		
	$= 0.3678^{\circ} = 0.00673^{\circ}$	MI AI FI (min 2si)	
			2
(iii)	From tables $\Phi^{-1}(0.95) = 1.645$		
	k-63	B1 for ± 1.645 seen	
	$\frac{-1.645}{5.2} = -1.645$	MIT for correct equation in k	
	$x = 63 - 5.2 \times 1.645 = 54.45$ mins	- 1	•
		A1 CAO	3
(iv)	H ₀ : $\mu = 63$ minutes: H ₁ : $\mu < 63$ minutes.	B1 for use of 63	
	Where μ denotes the population mean time on the new	B1 for both correct	
	course.	B1 for definition of μ	3
	617 - 63 - 13		
	Test statistic = $\frac{617}{52}\frac{65}{2} = \frac{13}{13426}$	M1 must include $\sqrt{15}$	
	= -0.968		
		AI	
	5% level 1 tailed critical value of $z = 1.645$	$D1 for \pm 1.645$	
	-0.968 > -1.645 so not significant.	M1 for sensible	
	There is not sufficient evidence to reject H_0	comparison	
		leading to a	
		conclusion	
	There is insufficient evidence to conclude that the new course results in lower times	A1 FT for correct	
	course results in lower times.	conclusion in words in	
		context	5
			19

June 2010

Question 4	
-------------------	--

	H ₀ : no associatio	B1	1			
(i)	running; H ₁ : some associa	tion between	mer and type			
	of running;		mer und type			
				M1 A2 fam anns at al		
		т .	MI A2 for expected			
	EXPECTED	Junior	Senior	Veteran	values (to 2 up)	
	I rack Dood	0.13 6.49	7.04	0.03	(allow A1 for at least	
	Roth	0.40 5.40	9.90	6.35	one row or column	
	Dotti	5.40	0.20	0.55	correct)	
	CONTRIBUTN	Junior	Senior	Veteran	M1 for any 11 distance of	
	Track	2.9257	0.0032	2.6949	MIT for valid attempt at $(O E)^2/E$	
	Road	0.9468	0.3663	2.5190	(0-E)/E	
	Both	0.3615	0.3694	0.0192	NB These M1A1 marks cannot be implied by a correct final value of X^2	
					a correct mai value of X	
						7
	$X^2 = 10.21$				M1 for summation	•
					A1 for X^2	
	Refer to X_4^2				B1 for 4 deg of f	
	Critical value at	5% level =	9.488		B1 CAO for cv	
	Result is signific	cant	B1 FT their 'sensible' X^2			
	There is evide association betw running. NB if $H_0 H_1$ reverse first B10r final E1	ence to sug ween catego ed, or 'correlat	re is some and type of o not award	E1 must be consistent with their X^2	4	
(ii)	• Juniors a than exp expected	appear be tra ected and ro l.	re often nan	E1 E1		
	Seniors t categorie	tend to be as es of running	l three	E1 E1		
	• Veterans expected	s tend to be i l and track r	ore than n expected.	E1 E1	6	
			TOTAL	18		

4767 Ouestion 1 Mark Scheme

January 2011

X				
(i)	EITHER: $S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 1398.56 - \frac{1}{14} \times 139.8 \times 140.4$	M1 for method for S_{xy}		
	$= -3.434$ $S_{xx} = \Sigma x^{2} - \frac{1}{n} (\Sigma x)^{2} = 1411.66 - \frac{1}{14} \times 139.8^{2} = 15.657$ $S_{xx} = \Sigma y^{2} - \frac{1}{n} (\Sigma y)^{2} = 1417.88 - \frac{1}{14} \times 140.4^{2} = 9.869$	M1 for method for at least one of S_{xx} or S_{yy} A1 for at least one of		If \overline{r} and \overline{y} used in rounded form, be generous with first A1
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-3.434}{\sqrt{15.657 \times 9.869}}$ $= -0.276$	S_{xy} , S_{xx} , S_{yy} correct M1 for structure of <i>r</i> A1 (-0.27 to -0.28 to 2dp)		Structure of <i>r</i> needs to be fully correct in all parts – the first two M1 marks must have been earned and $r = \frac{S_{xy}}{\sqrt{S_{xy}}}$ applied.
	OR: $\operatorname{cov}(x,y) = \frac{\sum xy}{n} - \overline{xy} = 1398.56/14 - 9.9857 \times 10.0286$ = -0.2454	M1 for method for cov (<i>x</i> , <i>y</i>)		
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(15.657/14)} = \sqrt{1.1184} = 1.0575$	M1 for method for at least one msd		
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(9.869/14)} = \sqrt{0.7049} = 0.8396$	A1 for at least one of cov (x,y) , msd (x) , msd (y) correct		If \overline{x} and \overline{y} used in rounded form, be generous with first A1
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{-0.2454}{1.0575 \times 0.8396}$ = -0.276 NB: using only 3dp in calculating \overline{x} and \overline{y} leads to answer of 0.284 which is still in the acceptable range	M1 for structure of <i>r</i> A1 (-0.27 to -0.28 to 2dp)	5	Structure of <i>r</i> needs to be fully correct in all parts – the first two M1 marks must have been earned and $r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)}$ applied.

4767	Mark Scheme	Jan	uary	2011
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient	B1 for H_0 , H_1 in symbols B1 for defining ρ		Condone hypotheses written in words and context. e.g. allow H_0 : There is no correlation between $x \& y$, H_1 : There is correlation between $x \& y$. (i.e. allow $x \& y$ as 'context' since these are defined in the question) NB If hypotheses given only in words and 'association' mentioned then do not award first B1 and last B1 For hypotheses written in words, candidates must make it clear that they are testing for evidence of correlation in the population.
	For $n = 14$, 5% critical value = -0.5324	B1 for critical value (+ or -)		One-tailed test $cv = (-) 0.4575$
	Since $-0.276 > -0.5324$ the result is not significant. Thus we do not have sufficient evidence to reject H ₀	M1 for a sensible comparison leading to a conclusion (provided that $-1 < r < 1$)		Comparison should be between the candidate's value of r from part (i) and an appropriate cv (i.e. the sign of the cv and the sign of r should be the same).
	There is not sufficient evidence at the 5% level to suggest that there is correlation between birth rate and death rate	Al for correct result it their <i>r</i> B1 ft for conclusion in context	6	NOTE If result not stated but final conclusion is correct award SC1 to replace the final A1 B1
(iii)	The underlying population must have a bivariate Normal distribution. Since the scatter diagram has a roughly elliptical shape.	B1 E1 for elliptical shape	2	Not bivariate and Normal
(iv)	Because this data point is a long way from the other data and it is below and to the right of the other data. It does bring the validity of the test into question since this extra data point is so far from the other points and so there is less evidence of ellipticity.	E1 for a long way E1 for below and to the right of. E1 for does cast doubt on validity E1 for less elliptical	4	Indication that the point is (possibly) an outlier For identifying the position of this point (allow in terms of x and y) Allow 'no' but only with with suitable explanation e.g. the sample is still too small to provide evidence either for or against the presence of ellipticity.
		TOTAL	17	

Question 2

(i)	Mean = $\frac{\Sigma xf}{n} = \frac{0+15+24+27+16+10}{50}$ = $\frac{92}{50} = 1.84$ Variance = $\frac{1}{n-1} (\Sigma f x^2 - n \overline{x}^2)$	B1 for mean M1 for calculation		Use of MSD gets M1 A0 Standard deviation gets M0 A0 unless "Variance = 1.81" is seen.
	$= \frac{-49}{49} (238 - 30 \times 1.84)$ = 1.81 (to 2 d.p.)	A1	3	
(ii)	Because the mean is close to the variance	B1	1	Must compare mean and their variance as found in part (i)
(iii)	(A) P(No sultanas) = $e^{-1.84} \frac{1.84^0}{0!}$ = 0.159 (3 s.f.) (B) P(At least two sultanas) =	M1 for probability calc.		[1.8 leads to 0.1653]
	$1 - e^{-1.84} \frac{1.84^{0}}{0!} - e^{-1.84} \frac{1.84^{1}}{1!}$ =1 - 0.159 - 0.292 = 0.549	M1 for P(1) M1 for 1 - [P(0) + P(1)] used A1 cao	5	Or attempt to find P(2) + P(3) + P(4) + + P(8) Use of $\lambda = 1.8$ loses both accuracy marks [1.8 leads to 1 - 0.4296 = 0.5372]
(iv)	$\lambda = 5 \times 1.84 = 9.2$ Using tables: $P(X \ge 10) = 1 - P(X \le 9)$	B1 for mean (SOI) M1 for $1 - P(X \le 9)$		Αηγ λ
	= 1 – 0.5611 (= 0.4389 NB ANSWER GIVEN)	A1	3	

4767	Mark Sch	eme Ja	nuary	2011
(v)	P(2 out of 6 contain at least ten sultanas) = $\binom{6}{2} \times 0.4389^2 \times 0.5611^4 = 0.2864$	M1 for $p^2 \times q^4$ M1 dep for coefficient A1	3	p + q = 1 Coefficient of 15 as part of a binomial calculation ft if <i>p</i> rounded from part (iv)
(vi)	Use Normal approx with $\mu = np = 60 \times 0.4389 = 26.334$ $\sigma^2 = npq = 60 \times 0.4389 \times 0.5611 = 14.776$ $P(X > 30) = P\left(Z > \frac{30.5 - 26.334}{\sqrt{14.776}}\right)$ $= P(Z > 1.0838) = 1 - \Phi(1.0838)$ = 1 - 0.8608 = 0.1392	B1 for μ B1 for σ^2 B1 for correct continuity correction M1 for probability using correct tail. FT their $\mu \& \sigma^2$ A1 cao	5	SOI Allow 26.3 Allow 14.8 (giving P(Z > 1.091) = 0.137 3sf) But do not FT wrong or omitted CC
			20	

4767	Mark Schem	le Ja	anuary 2	011
Que	stion 3			
(i)	(A) $P(X < 325)$ = $P\left(Z < \frac{325 - 355}{52}\right)$ = $P(Z < -0.577)$	M1 for standardising		NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only Ignore spurious continuity corrections & allow reversal of numerator
	$= 1 - \Phi(0.577) = 1 - 0.7181$	M1 for correct structure		i.e. correct tail (including below a negative <i>z</i>)
	= 0.2819	A1 CAO	3	Allow answers which round to 0.282
	(B) P(300 < X < 400) = P $\left(\frac{300 - 355}{52} < Z < \frac{400 - 355}{52}\right)$ = P (-1.058 < Z < 0.865)	M1 for standardising both		Penalise spurious continuity corrections
	$= \Phi(0.865) - (1 - \Phi(1.058))$ = 0.8065 - (1 - 0.8549) = 0.6614 (0.6615 from GDC)	M1 for correct structure		Allow 0.663 if penalised inappropriate table use already
			3	Use of standard deviation = $\sqrt{52}$ or 52^2 can earn M1 for structure only in each part – max 2/6
(ii)	From tables $\Phi^{-1}(0.2) = -0.8416$	B1 for ± 0.8416 seen		NOT 1 – 0.8416
	$\frac{k-355}{52} = -0.8416$	M1 for equation in k		Equation must be equivalent to this. Penalise use of $+$ 0.8416 unless numerator has been reversed. Condone other <i>z</i> values but use of
	$k = 355 - 0.8416 \times 52 = 311.2$	A1 CAO	3	probabilities here, e.g. use of 0.2 or $\Phi(0.2) = 0.5793$, gets M0 A0 Allow 311

4767	Mark Schem	Mark Scheme January 2		011
(iii)	H ₀ : $\mu = 355$; H ₁ : $\mu \neq 355$. Where μ denotes the population mean (reaction time for women)	B1 for use of 355 in hypotheses B1 for both correct B1 for definition of μ		Use of 355 in hypotheses and hypotheses given in terms of μ not p or x , etc. unless letter used is clearly defined as population mean
	Test statistic = $\frac{344 - 355}{52/\sqrt{25}} = \frac{-11}{10.4} = -1.058$	M1 must include $\sqrt{25}$ A1		Allow + 1.058 only if later compared with + 1.96
	5% level 2 tailed critical value of $z = 1.96$ -1.058 > -1.96 so not significant. There is not sufficient evidence to reject H ₀	B1 for 1.96 M1 for a sensible comparison leading to a conclusion		Or -1.96
	There is insufficient evidence to conclude that women have a different reaction time from men in this experiment.	A1 for correct conclusion in words in context	8	Do not accept 'men and women have same reaction time'
		TOTAL	17	

Mark Scheme

4767	
Question	4

(i)	H_0 : no associatio H_1 : some associa	on between pe ation between	bble size and signal pebble size and	te site;	B1		Must be in context NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1 or final E1
	EXPECTED Large Medium Small	Site A 13.70 33.33 42.96	Site B 9.44 22.96 29.60	Site C 13.86 33.70 43.44	M1 A2 for expected values (to 2 dp) (allow A1 for at least one row or column correct)		1d.p.can get M1A1A0 M1A2 can be implied by correct contributions/final answer
	CONTRIB'N Large Medium Small	Site A 0.1226 0.8533 0.3793	Site B 0.6940 1.5484 0.3913	Site C 1.0731 3.7861 1.2744	M1 for valid attempt at (O-E) ² /E A1		NB These (M1A1) marks cannot be implied by a correct final value of X^2 . A1 for at least 1 row/column correct
	$X^2 = 10.12$				M1 for summation A1 for X^2		Dependent on previous M1
	Refer to X_4^2 Critical value at Result is signific	t 5% level = 9 cant	9.488		B1 for 4 deg of freedom B1 CAO for cv B1 ft their 'sensible' X^2 and critical value		Award only if no incorrect working seen Allow reject H_0 . B0 if critical value of 0.711 (lower tail) or 2.776 (t distribution) used.
	There is evidend association betw	ce to suggest veen pebble s	that there is so size and site	ome	E1 must be consistent with their X^2	12	Dependent on previous B1 SC1 (to replace B1E1 if first B1B1 earned where 'significant' not stated but final statement is correct)

4767	Mark Scheme	Jan	uary 2	2011
(ii)	Site A Contributes least to χ^2 showing that frequencies are as expected if there were no association. OR Contribution of 0.8533 implies that there are (slightly) fewer medium pebbles than expected. Site B Contribution of 1.5484 implies that there are fewer medium pebbles than expected. Site C Contribution of 3.7861 implies that there are a lot more medium than expected. NB MAX 3/6 for answers not referring to contributions (explicitly or implicitly).	E2,1,0 E2,1,0 E2,1,0 Need 'a lot more' for E2	2 2 2	 NOTE For each site, some reference to contributions needed (explicitly or implicitly). Award E2 only if no incorrect additional comment made. Allow large/small 'as expected' or 'more than expected' and medium 'as expected' or 'less than expected' for E1 (if contribution not mentioned) Award E2 only if no incorrect additional comment made. Allow large/small 'as expected' or 'more than expected' and medium 'less than expected' for E1 (if contribution not mentioned) Award E2 only if no incorrect additional comment made. Allow large/small 'as expected' for E1 (if contribution not mentioned) Award E2 only if no incorrect additional comment made. Allow large/small 'fewer than expected' and medium 'more than expected' for E1 (if contribution not mentioned)
		TOTAL	18	

January 2011

Additional notes re Q1(ii)

For those carrying out a one-tailed test, B0 B1 B1 M1 A1 B1 is available provided that working is consistent with a one-tailed test being used. For the final B1 to be earned, the conclusion should refer to alternative hypothesis used. e.g. 'There is not sufficient evidence at the 5% level to suggest that there is a **negative** correlation between birth rate and death rate'.

If the cv is taken from the Spearman's Test table (i.e. -0.5385 and -0.4637) then the third B1 will be lost. If other 'sensible' cvs are used then only B1 B1 B0 M1 A0 B0 available. Use of t distribution leads to B1 B1 B0 M0 A0 B0 max.

Additional notes re Q3(iii)

<u>Critical Value Method</u> $355 - 1.96 \times 52 \div \sqrt{25}$ gets M1B1 = 334.6... gets A1 334.6 < 344 gets M1for sensible comparison A1 still available for correct conclusion in words & context

Confidence Interval Method CI centred on 344 + or - $1.96 \times 52 \div \sqrt{25}$ gets M1 B1 = (323.62, 364.384) A1 contains 355 gets M1 A1 still available for correct conclusion in words & context

 $\frac{\text{Probability Method}}{\text{Finding P(sample mean < 344)} = 0.1451 \text{ gets M1 A1 B1}} \\ 0.1451 > 0.025 \text{ gets M1 for a sensible comparison if a conclusion is } 0.1451 > 0.05 \text{ gets M1 A0 unless using one tailed test}} \\ \text{A1 still available for correct conclusion in words & context.}} \\ \text{Condone P(sample mean > 344)} = 0.8549 \text{ for M1 but only allow A1 if later compared with 0.975 at which point the final M1 and A1 are still available} \\ \end{aligned}$

One-tailed test

Max B1 B0 B1 M1 A1 B1 (for cv = -1.645) M1 A1 (provided that the conclusion relates to H₁: $\mu < 355$, e.g. there is insufficient evidence to suggest that women have a lower reaction time than men in this experiment).

Consistent use of $\sigma = \sqrt{52}$ Do not penalise in parts (ii) and (iii).

9

GCE

Mathematics (MEI)

Advanced GCE

Unit 4767: Statistics 2

Mark Scheme for June 2011

4767		Mark Scheme		June 2011
1 (i)		G1 for axes G1 For values of <i>x</i> G1 for values of <i>y</i>	2	Condone axes drawn either way. Axes should show some indication of scale. If not then Max G1 if points 'visibly correct'. If axes are scaled and only one point is incorrectly plotted, allow max G2/3.
1 (ii)	$\overline{x} = 60, \ \overline{y} = 4.26$ $b = \frac{S_{xy}}{S_{xx}} = \frac{1803 - 300 \times 21.3/5}{27000 - 300^2/5} = \frac{525}{9000} = 0.0583$ OR $b = \frac{1803/5 - 60 \times 4.26}{27000/5 - 60^2} = \frac{105}{1800} = 0.0583$ hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$ $\Rightarrow y - 4.26 = 0.0583 (x - 60)$ $\Rightarrow y = 0.0583x + 0.76$	 B1 for x̄ and ȳ used appropriately (SOI) M1 for attempt at gradient (b) A1 for 0.0583 cao M1 for equation of line A1 FT for complete equation 	5	B1 for means can be implied by a correct value of <i>b</i> using either method. Allow $\overline{y} = 4.3$ Attempt should be correct – e.g. evidence of either of the two suggested methods should be seen. Allow 0.058 Condone $0.058^{\frac{1}{3}}$ and $\frac{7}{120}$ Dependent on first M1. Values must be substituted to earn M1. Condone use of their <i>b</i> for FT provided <i>b</i> >0. Final equation must be simplified. <i>b</i> = 0.058 leads to $y = 0.058x + 0.78$
1 (iii)	Regression line plotted on graph The fit is good	G1 G1 E1 for good fit	3	Line must pass through their $(\overline{x}, \overline{y})$ and y- intercept. E0 for notably inaccurate graphs/lines

1 (iv)	$x = 30 \Rightarrow$ predicted $y = 0.0583 \times 30 + 0.76 = 2.509$ Residual = $2.5 - 2.509 = -0.009$	B1 for prediction M1 for subtraction A1 FT	3	Using their equation Subtraction can be 'either way' but for the final mark the sign of the residual must be correct. FT sensible equations only – e.g. no FT for $y = 0.071x$ leading to +0.37. [$c = 0.78$ leads to a residual of -0.02]
1 (v)	(A) For $x = 45$, $y = 0.0583 \times 45 + 0.76 = 3.4$ (B) For $x = 150$, $y = 0.0583 \times 150 + 0.76 = 9.5$	M1 for at least one prediction attempted A1 for both answers (FT their equation provided their <i>b</i> >0)	2	Prediction obtained from their equation.
1 (vi)	This is well below the predicted value suggesting that the model breaks down for larger values of <i>x</i> .	E1 for well below E1 extrapolation	2	Some indication that the value (8.7) is significantly below what is expected (9.5) is required for the first E1. Simply pointing out that it is 'below' is not sufficient. The second E1 is available for a suitable comment relating to the model being suitable only for values within the domain of the given points. Allow other sensible comments for either E1. E.g. The data might be better modelled by a curve', 'there may be other factors affecting yield',
			18	

4767		Mark Scheme		June 201
2 (i)	Independently means that the arrival time of each car is unrelated to the arrival time of any other car. Randomly means that the arrival times of cars are not predictable	E1 E1		NOTE Each answer must be 'in context' and 'clear' Allow sensible alternative wording.
	At a uniform average rate means that the average rate of car arrivals does not vary over time.	E1	3	SC1 For ALL answers not in context but otherwise correct.
2 (ii)	P(At most 1 car) = $e^{-0.62} \frac{0.62^0}{0!} + e^{-0.62} \frac{0.62^1}{1!}$ = 0.5379 + 0.3335 = 0.871	M1 for either M1 for sum of both A1 CAO	3	$1.62e^{-0.62}$ Allow 0.8715 not 0.872 or 0.8714 Allow 0.87 without wrong working seen
2 (iii)	New $\lambda = 10 \times 0.62 = 6.2$ P(more than 5 in 10 mins) = 1 – 0.4141 = 0.5859	B1 for mean (SOI) M1 for probability A1 CAO	3	Use of $1 - P(X \le 5)$ with any λ Allow 0.586
2 (iv)	Poisson with mean 37.2	B1 for Poisson B1 for mean 37.2	2	Dependent on first B1 Condone P(37.2, 37.2)
2 (v)	Use Normal approx with $\mu = \sigma^2 = \lambda = 37.2$ $P(X \ge 40) = P\left(Z > \frac{39.5 - 37.2}{\sqrt{37.2}}\right)$ $= P(Z > 0.377) = 1 - \Phi(0.377) = 1 - 0.6469$ = 0.3531	 B1 for Normal (SOI) B1 for parameters B1 for 39.5 M1 for correct use of Normal approximation using correct tail A1 cao 	5	Allow 0.353
			10	

4767		Mark Scheme		June 201
3 (i)	P(Apple weighs at least 220g) = P $\left(Z > \frac{220 - 210.5}{15.2}\right)$	M1 for standardising		Condone numerator reversed but penalise continuity corrections
	= P(Z > 0.625) = 1- $\Phi(0.625) = 1 - 0.7340$ = 0.2660	M1 for correct structure A1 CAO inc use of diff tables		i.e. $1 - \Phi(\text{positive } z \text{ value})$ Allow 0.266 but not 0.27
			3	
3 (ii)	P(All 3 weigh at least 220g) = $0.2660^3 = 0.0188$	M1 A1 FT	2	M1 for their answer to part (i) cubed Allow 0.019 and 0.01882
3 (iii)	(A) Binomial (100, 0.0188) (B) Use a Poisson distribution with $\lambda = 100 \times 0.0188 = 1.88$ P(At most one) = $e^{-1.88} \frac{1.88^0}{0!} + e^{-1.88} \frac{1.88^1}{1!}$ = 0.1525 + 0.2869 = 0.4394 (C) <i>n</i> is large and <i>p</i> is small	 B1 for binomial B1 for parameters B1 for Poisson SOI B1 for Poisson mean M1 for either probability M1 for sum of both A1 CAO For 0.44 or better B1 	2 5 1	Second B1 dependent on first B1 FT their answer to part (ii) for second B1 Consistent with $p < 0.1$ from part (iii) (A) FT answer to part (ii) with $p < 0.1$ Dependent on both previous B1 marks Allow 0.4395 but not 0.4337 Dependent on use of Poisson in part (iii) B Allow n is large and $np < 10 \& n$ is large and $np \approx npq$
3(iv)(A)	$\Phi^{-1}(0.1) = -1.282$ $\frac{170 - 185}{\sigma} = -1.282$ $1.282 \sigma = 15$ $\sigma = 11.70$	B1 for ±1.282 M1 for correct equation as written o.e. A1 CAO	3	Do not allow 1 – 1.282 Allow M1 if different <i>z</i> -value used Without incorrect working seen. Allow 11.7

4767		Mark Scheme		June 201
3(iv)(<i>B</i>)	and and and and and and and and and and	G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height for Braeburns G1 for greater width (variance) for Braeburns	4	Ignore labelling of vertical axis. Two intersecting, adjacent Normal curves Means at 185 and 210.5
		TOTAL	20	
4(a)(i)	H_0 : no association between amount spent and sex H_1 : some association between amount spent and sex	B1 for both	1	Hypotheses must be the right way round, in context and must not mention 'correlation'.
4(a)(ii)	Expected frequency = $62 \times 102 \div 200 = 31.62$	B1		Do not allow 31.6
	Contribution = $(34 - 31.62)^2 / 31.62$ = 0.1791	M1 A1 for valid attempt at (O-E) ² /E NB Answer given	3	

4767		Mark Scheme		June 201
4 (a)(iii)	Refer to X_4^2 Critical value at 5% level = 9.488 3.205 < 9.488 Result is not significant	B1 for 4 deg of freedom B1 CAO for cv M1 A1 for not significant		Allow $p = 0.524$ 0.524 > 0.05 Conclusion must be stated to earn A1 here. Allow 'do not reject H ₀ ' and condone 'accept H ₀ ' or 'reject H ₁ ' ET if cy consistent with
	There is insufficient evidence to suggest any association between amount spent and sex.	E1	5	their d.o.f. Dependent on previous A1 and final comment must be in context and not mention correlation. SC1 for correct final conclusion where previous A1 omitted but M1 awarded.
4 (b)	H ₀ : $\mu = 400$; H ₁ : $\mu < 400$ Where μ denotes the population mean (weight of the loaves).	B1 for H_0 B1 for H_1 B1 for definition of μ		Hypotheses in words must refer to population mean.
	$\bar{x} = 396.5$	B1 for sample mean		
	Test statistic $=\frac{396.5 - 400}{5.7 / \sqrt{6}} = \frac{-3.5}{2.327} = -1.504$	M1 must include √6 A1FT their sample mean		Condone numerator reversed for M1 but award A1 only if test statistic of 1.504 is
	5% level 1 tailed critical value of $z = -1.645$	B1 for ±1.645		compared with a positive z-value.
	-1.504 > -1.645 so not significant.	M1 for sensible comparison leading to a conclusion		Dependent on previous M1
	There is insufficient evidence to reject H ₀			
	There is insufficient evidence to suggest that the true mean weight of the loaves is lower than the minimum specified value of 400 grams.	A1 for conclusion in context	9	FT their sample mean only if hypotheses are correct.
		TOTAL	18	

June 2011

Additional notes re Q1 parts (ii), (iv) and (v)

Part (ii) 'x on y' max B1 Part (iv) x = 16.9y - 12.02 leads to a prediction of x = 30.23 and a residual of -0.23 B1 M1 A1 available. Part (v) 'x on y' not appropriate here so award 0 if 'x on y' used.

Additional notes re Q2 parts (i) & (v)

Part (i)

Independent – Allow 'not linked to' or 'no association' or 'unrelated' 'not affected by', 'not connected to', 'not influenced by' DO NOT ACCEPT 'not together' or 'not dependent'

Random – Allow 'not predictable' or 'no pattern' or 'could happen at any time' or 'not specific time'

Uniform average rate – Allow 'average (rate) is constant over time' DO NOT ACCEPT 'average constant' or 'average rate and uniform' – be generous over defining 'average' and/or 'rate'.

Part (v) If Binomial distribution stated in part (iv), allow B1 B0 B1 M0 A0 max

Additional notes re Q3 part (iii) where p > 0.1

(iii) B – as scheme unless a Normal approximation is more suitable (p > 0.1). If so, award B1 B1 for Normal and correct parameters. The remaining marks are dependent on both these B1 marks being awarded. M1 for the correct continuity correction (P(X < 1.5)) and depM1 for the correct tail but award A0.

(iii) C - n is large and p is not too small' or p > 10'

June 2011

Additional notes re Q4(b)

σ estimated

sample mean, 7.079... used in place of 5.7, the given value of the population mean, leads to a test statistic of -1.212... This gets M1A0 & the remaining marks are still available.

Critical Value Method

 $400 - 1.645 \times 5.7 \div \sqrt{6}...$ gets M1B1 ...= 396.17...gets A1 $400 + 1.645 \times 5.7 \div \sqrt{6}$ gets M1B1A0. 396.5 > 396.2 gets M1for sensible comparison (and B1 for 396.5) A1 still available for correct conclusion in words & context

<u>90% Confidence Interval Method</u> CI centred on 396.5 (gets B1 for 396.5) + or $-1.645 \times 5.7 \div \sqrt{6}$ gets M1 B1 = (392.67, 400.33) A1 contains 400 gets M1 A1 still available for correct conclusion in words & context

 $\frac{\text{Probability Method}}{\text{Finding P(sample mean < 396.5)} = 0.0663 \text{ gets M1 A1 (and B1 for 396.5)}} \\ 0.0663 > 0.05 \text{ gets M1 for a sensible comparison if a conclusion is made and also gets the B1 for 0.0663 (to replace the B1 for cv = 1.645).} \\ \text{A1 still available for correct conclusion in words & context.} \\ \text{Condone P(sample mean > 396.5)} = 0.9337 \text{ for M1 and B1 for 0.9337 but only allow A1 if later compared with 0.95 at which point the final M1and A1 are still available} \\ \end{aligned}$

 $\frac{\text{Two-tailed test}}{\text{Max B1 B0 B1 B1 M1 A1 B1 (for cv = -1.96) M1 A0}$

June 2012

Question		on	Answer	Marks	Guidance	
1	(i)		EITHER			
			$S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 600.41 - \frac{1}{10} \times 113.69 \times 52.81 = 0.01311$	M1	For method for S_{xy}	
			$S_{xx} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 1292.56 - \frac{1}{10} \times 113.69^2 = 0.01839$	M1	For method for at least one of S_{xx} or S_{yy}	
			$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 278.91 - \frac{1}{10} \times 52.81^2 = 0.02039$	A1	For at least one of S_{xy} , S_{xx} or S_{yy} correct	
			S ₁₇ 0.01311	M1	For fully correct structure of <i>r</i>	
			$r = \frac{1}{\sqrt{S_{xx}S_{yy}}} = \frac{1}{\sqrt{0.01839 \times 0.02039}} = 0.677$	A1	For answer rounding to 0.68	
			OR			
			$\operatorname{cov}(x,y) = \frac{\sum xy}{n} - \overline{xy} = 600.41/10 - 11.369 \times 5.281 = 0.001311$	M1	For method for $cov(x,y)$	
			rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(0.01839/10)} = \sqrt{0.001839} = 0.04288$	M1	For method for at least one msd or rmsd	
			rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(0.02039/10)} = \sqrt{0.002039} = 0.04516$	A1	For at least one of $cov(x, y)$, msd or rmsd correct	
			cov(x v) = 0.001311	M1	For fully correct structure of <i>r</i>	
			$r = \frac{1000(x,y)}{rmsd(x)rmsd(y)} = \frac{10001011}{0.04288 \times 0.04516} = 0.677$	A1	For answer rounding to 0.68	
					Methods mixed – max M0M1A1M0A0	
				[5]		
1	(ii)		H ₀ : $\rho = 0$	B1	For H_0 , H_1 in symbols. Hypotheses in words must refer to	
			$H_1: \rho \neq 0$ (two-tailed test)		population. Do not allow alternative symbols unless clearly	
					defined as the population correlation coefficient.	
			where ρ is the population correlation coefficient	B1	For defining ρ . Condone omission of "population" if correct	
			, r r		notation ρ is used, but if ρ is defined as the sample	
					correlation coefficient then award B0 .	
			For $n = 10$, 10% critical value = 0.5494	B1	CAO	
					Note that critical values for a one-tailed test at the 10% level	
					are not available in tables.	

			Since 0.677 > 0.5494 the result is significant.	M1	For sensible comparison leading to a conclusion provided that $ r < 1$. The comparison can be in the form of a diagram as long as it is clear and unambiguous. Sensible comparison: e.g. $0.677 > 0.5494$ is 'sensible' whereas $0.677 > -0.5494$ is 'not sensible'. Reversed inequality sign e.g. $0.677 < 0.5494$ etc. gets max M1 A0.	
			(Thus we have sufficient evidence to) reject H_0	A1*	For reject H_0 o.e. FT their <i>r</i> and critical value from 10% 2- tail column.	
			There is sufficient evidence at the 10% level to suggest that there is correlation between times for the first and last sections.	E1dep*	For correct, non-assertive conclusion in context. Allow 'x and y' for context. E0 if H_0 and H_1 not stated, reversed or mention a value other than zero for ρ in H_0 . Do not allow 'positive correlation' or 'association'	
				[6]	1	
1	(iii)		The underlying population must have a bivariate Normal distribution. The points in the scatter diagram should have a roughly elliptical shape.	B1 E1	Condone "bivariate Normal distribution", "underlying bivariate Normal distribution", but do not allow "the data have a bivariate Normal distribution" Condone 'oval' or suitable diagram	
1	(iv)		The hypothesis test has shown that there appears to be correlation. However it could be that there is a third causal factor	E1	For relevant comment relating to the test result or positive value of r in supporting (unless FT leads to not supporting) the commentator's suggestion. Or correlation does not imply causation. There may be a third factor. For questioning the use of the word 'must'	
				[2]	Allow any two suitable, statistically based comments.	
1	(v)	(A)	Yes because the critical value at the 1% level is 0.7646	<u> </u>	B1 for 0.7646 seen	
			which is larger than the test statistic	E1dep* [2]	E1 for comment consistent with their (ii) provided $r < 1$	

June 2012

1	(v)	(<i>B</i>)	One advantage of a 1% level is that one is less likely to reject the null hypothesis when it is true	E1	o.e. Wording must be clear.
			One disadvantage of a 1% level is that one is more likely to accept the null hypothesis when it is false.	E1	o.e.
				[2]	
2	(i)		Binomial(1200,1/300)	B1	For binomial.
				B1dep	For parameters
				[2]	Allow B(1200, 1/300) and B(1200, 0.00333)
2	(ii)		Because n is large and p is small	E1, E1	Allow <i>n</i> is large and $np < 10$.
					Allow "sample is large" for <i>n</i> is large and "mean \approx
					variance" for " <i>p</i> is small"
				[2]	
2	(iii)		$\lambda = 1200 \times 1/300 = 4$	BI	For λ FT their p
			(A) $P(X=1) = e^{-4} \frac{4^{1}}{1!} = 0.0733 (3 \text{ s.f.})$	MI	For attempt to find $P(X = 1)$ using Poisson p.d.f. or tables
			or from tables $= 0.0916 - 0.0183 = 0.0733$	A1	Allow answers which round to 0.073 www. FT their λ (= <i>np</i>). No FT for $\lambda = 1/300$.
			(B) Using tables: $P(X > 4) = 1 - P(X \le 4)$	M1	For finding $1 - P(X \le 4)$
			= 1 - 0.6288 = 0.3712	A1	CAO For answers rounding to 0.371 www
				[5]	
2	(iv)		$\mu = 80$	B1	If symbols/words used then they must be correct.
			$\sigma^2 = 80$	B1	Allow σ^2 rounding to 79.7 from original binomial.
					FT their λ (= <i>np</i>)
				[2]	
2	(v)	(A)	p(V > 00) = p(Z > 89.5 - 80)	B1	For correct continuity correction.
			$P(I \ge 90) = P[Z \ge \frac{1}{\sqrt{80}}]$	MI	For probability using correct tail and structure (condone
					omission of c.c.)
			$- P(7 > 1.062) - 1 \Phi(1.062)$		$\sigma^2 = 70.72$ loads to $P(7 > 1.064)$
			$ = \Gamma(2 \ge 1.002) = 1 - \Psi(1.002) $ = 1 - 0.8559 - 0.1//1	A1cao	$\sigma^2 = 79.73$ leads to $1 = 0.8563 = 0.1437$
			-1 - 0.0337 - 0.1441	Alcau	0 = 77.75 reads to $1 = 0.0505 = 0.1457$.
					NOTE 0 1441 from B(24000 1/300) gets 0/3
				[3]	

June 2	2012
--------	------

2	(v)	(<i>B</i>)	$P(Y \le k) > 0.05$		
		. ,	From tables $\Phi^{-1}(0.05) = -1.645$	B1	For ± 1.645 seen
			(k+0.5) - 80	M1	For correct equation in k seen or equivalent – e.g. allow
			$\frac{(1+0.0)^{-0.00}}{\sqrt{20}} = -1.645$		+1.645 used if numerator reversed. FT their μ , σ^2 and z-
			$\sqrt{80}$		value. Condone omission of, or incorrect, continuity
					correction.
			$k + 0.5 = 80 - (1.645 \times \sqrt{80}) = 65.29$	A1	A1 for 65.29 or 64.79 or 65.79 ($\sigma^2 = 79.73$ leads to 65.31 or
			<i>k</i> > 64.79		64.81 or 65.81) Allow 3s.f.
			So least value of $k = 65$	A1	For rounding 64.79 or 64.81 up to give <i>k</i> = 65 .
					See additional notes for alternative method
				[4]	
3	(i)		(750-7514)	M1	For standardizing
			$P(X \ge 750) = P Z \ge \frac{750}{25}$	M1	For correct structure (M0 if continuity correction used)
			(2.5)		
			$= P(Z > -0.56) = \Phi(0.56) = 0.7123$	A1	CAO Allow 0.712 www
				[3]	
3	(ii)		$P(all 6 at least 750ml) = 0.7123^6$	M1	For (their answer to part (i)) ⁶
			= 0.1306	A1	FT 3s.f.
				[2]	
3	(iii)		(25) 25	M1	For using Binomial(25, <i>p</i>) with their <i>p</i> from part (ii)
			$P(Y=0) = (x + 0.8694^{23}) = (x + 0.0302)$		
			$\left(0\right)$		
			(25) 0.0504 ²⁴ 0.1205 (0.1105)	M1	For correct structure of either $P(Y = 0)$ or $P(Y = 1)$ with their
			$P(Y=1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \times 0.8694^{-1} \times 0.1306 \ (= 0.1135)$		<i>p</i> from part (ii) M0 if <i>p</i> and <i>q</i> reversed
			(-)		
			$\Gamma(I-0) + \Gamma(I-1) = 0.144$ D(V > 2) = 1 = 0.144	Midan	For 1 sum of both probabilities
			$\Gamma(1 \le 2) = 1 = 0.144$		roi 1 – sum or bour probabilities
			=0.830		CAU
				[4]	

June 2012

3	(iv)		$P(Z < \frac{750 - \mu}{2.5}) = 0.02$		
			$\Phi^{-1}(0.02) = -2.054$	B1	For ±2.054 seen. Allow ±2.055
			$750 - \mu = 2.054$	M 1	For correct equation as seen or equivalent. FT $\sigma = \sqrt{2.5}$. M0
			$\frac{1}{2.5} = -2.034$		if c.c. used.
			$\mu = 750 + 2.054 \times 2.5$	M1	For correctly rearranging their equation (if 750 used in numerator) for μ , FT their z
			= 755.1	A1 [4]	cao Condone 755 or 5 s.f. rounding to 755.1 www
3	(v)		$P(Z < \frac{750 - 751.4}{\sigma}) = 0.02$		
			$\frac{750 - 751.4}{2} = -2.054$	M1	For correct equation as seen or equivalent
			σ -1.4	M1	For correctly rearranging their equation (if 750 used in numerator) for σ unless this leads to $\sigma < 0$
			$\sigma = \frac{1}{-2.054}$		numerator) for 6 unless this leads to 6 < 0
			= 0.682	A1 [3]	cao Allow answers rounding to 0.68 www
3	(vi)		Probably easier to change the mean (as reducing the standard.	E1	
			deviation would require a much more accurate filling process).		
			filled overall and so less profit for the owners, so reducing the	E1	For "preferable to reduce the standard deviation" with valid
			standard deviation would be preferable to the vineyard owners.		reason.
				[2]	
4	(a)	(i)	Expected frequency = $67/150 \times 57 = 25.46$	B1	For 25.46
			Contribution = $(34 - 25.46)^2 / 25.46$	M1	For valid attempt at $(O-E)^2/E$
			= 2.8646	A1	Correct values used to give answer which rounds to 2.8646
				[3]	
4	(a)	(ii)	H ₀ : no association between type of cake and classification of person. H ₁ : some association between type of cake and classification of person. Test statistic $X^2 = 12.86$ Refer to X ₃ ² Critical value at 1% level = 11.34 Result is significant There is evidence to suggest association between type of cake and classification of person.	B1 B1 B1 E1	For both hypotheses in context For 3 degrees of freedom CAO For cv. No FT from here if wrong/omitted For significant For correct, non-assertive conclusion, in context.
---	-----	------	--	--------------------------------------	---
			NB if $H_0 H_1$ reversed, omitted or 'correlation' mentioned, do not award first B1 or final E1	[5]	
4	(b)		$\bar{x} = 4.995$ $H_0: \mu = 5$ $H_1: \mu < 5$ Where μ denotes the mean content of the bags of flour (in the population)	B1 B1 B1 B1 B1	For 4.995 seen For use of 5 in hypotheses. For both correct. Hypotheses in words must refer to population. Do not allow alternative symbols unless clearly defined as the population mean. For definition of μ in context. Condone omission of "population" if correct notation μ is used, but if μ is defined as the sample mean then award B0 .
			Test statistic $=$ $\frac{4.995 - 5.0}{0.0072 / \sqrt{8}} = \frac{-0.005}{0.002546} = -1.964$ Lower 5% level 1 tailed critical value of $z = -1.645$ -1.964 < -1.645 so significant. There is sufficient evidence to reject H ₀ There is sufficient evidence to suggest that the average contents of bags is less than 5kg.	M1* A1 B1* M1 dep* A1	as the sample mean mean award bo. must include $\sqrt{8}$ FT their \bar{x} . Allow +1.964 only if later compared with +1.645 For -1.645 No FT from here if wrong. Must be -1.645 unless it is clear that absolute values are being used. For sensible comparison with correct c.v. leading to a conclusion. For non-assertive conclusion in words and in context. No FT here. See additional notes.

ADDITIONAL NOTES REGARDING QUESTION 2 (v) B

M1 for using a trial and improvement method with N(80,80) or N(80, 79.73) to find P($Y \le k$) for any k. The distribution being used needs to be made clear.

A1 for $P(Y \le 66) = 0.0587...$ (0.0584... from $\sigma^2 = 79.73$) or $P(Y \le 65) = 0.0467...$ (0.0464... from $\sigma^2 = 79.73$) A1 for both Final A1 not available if 66 and 65 used

Or A1 for $P(Y \le 65.5) = 0.0524...$ (0.0521... from $\sigma^2 = 79.73$) or $P(Y \le 64.5) = 0.0415...$ (0.0412... from $\sigma^2 = 79.73$) A1 for both A1 for least value of k = 65, dependent on previous two A marks earned.

ADDITIONAL NOTES REGARDING QUESTION 4 (b)

<u>Critical Value Method</u> $5 - 1.645 \times 0.0072 \div \sqrt{8}$ gets M1*B1* = 4.9958... gets A1 4.995 < 4.99581.. gets M1dep* for sensible comparison A1 still available for correct conclusion in words & context

<u>"Confidence Interval" Method</u> $4.995 + 1.645 \times 0.0072 \div \sqrt{8}$ gets M1* B1* = 4.9991.. gets A1 NOTE that the final M1dep* A1 available only if 1.645 used. 5 > 4.9991... gets M1 A1 still available for correct conclusion in words & context

Probability Method Finding P(sample mean < 4.995) = 0.0248 gets M1* A1 B1 0.0248 < **0.05*** gets M1dep* for a sensible comparison if a conclusion is made. A1 available for a correct conclusion in words & context. Condone P(sample mean > 4.995) = 0.9752 for M1 but only allow A1 B1 if later compared with 0.95, at which point the final M1and A1 are still available

ADDITIONAL NOTE REGARDING OVER-SPECIFICATION OF ANSWERS

Over-specification by providing final answers correct to 5 or more significant figures will be penalised. When this applies, candidates may lose no more than 2 marks per question and no more than 4 marks in total. The only exception to this rule is in Question 3 part (iv) – see guidance note.

4767

Question		Answer	Marks	Guidance		
1	(i)	2.5 H 2 1.5 0.5 0 0 20 40 60 80 100 Thickness	G1 G2,1,0	 G1 For axes suitably labelled with some indication of linear scale provided. G2 for points plotted correctly. G1 if 4 points plotted correctly. G0 if two or more incorrectly plotted/omitted points. Special Case SC1 for points visibly correct on axes where no indication of scale has been provided. 	Allow <i>x</i> & <i>y</i> Allow axes reversed.	
			[3]			
1	(ii)	Thickness is the independent variable since the values of 'Thickness' are not subject to random variation, but are determined by the manufacturer.	E1	Allow explanations referring to thickness being "controlled" by the manufacturer. Allow equivalent interpretations.		
			[1]			
1	(iii)	$\bar{t} = 60, \ \bar{h} = 1.548$	B1	For \overline{t} and \overline{h} used. SOI (e.g. can be implied by $b = 0.0206$)		
		$b = \frac{S_{th}}{S_{tt}} = \frac{546.8 - (300 \times 7.74/5)}{22000 - 300^2/5} = \frac{82.4}{4000} =$	M1*	For attempt at calculating gradient (b) for h on t .		
		0.0206	A1	For 0.0206 cao		
		OR $b = \frac{546.8 / 5 - (60 \times 1.548)}{22000 / 5 - 60^2} = \frac{16.48}{800} = 0.0206$ hence least squares regression line is: $h - \bar{h} = b(t - \bar{t})$				

C	Question		Answer		Guidance
			$\Rightarrow h - 1.548 = 0.0206 (t - 60)$	M1	For equation of line, using their $b, b > 0$, and
				dep*	passing through their (\bar{t}, \bar{h})
			$\Rightarrow h = 0.0206 t + 0.312$	A1	Final equation must have h as the subject.
					CAO
					Allow $h = 0.021 t + 0.31$,
					Allow $h = 0.021 t + 0.288$
					NOTE If equation given in terms of <i>y</i> and <i>x</i> then A0
					unless $x \& y$ defined appropriately
				[5]	
1	(iv)	(A)	$(0.0206 \times 70) + 0.312 = 1.754$	B1	Allow 1.75
					FT their equation provided $b > 0$
			Likely to be reliable as interpolation	E1	
				[2]	
1	(iv)	(B)	$(0.0206 \times 120) + 0.312 = 2.784$	B1	Allow 2.78
					FT their equation provided $b > 0$
			Could be unreliable as extrapolation	E1	Condone "reliable as 120 is not too far away from
					the data used to produce the equation"
				[2]	
1	(v)		Thickness = $40 \implies$ predicted max height		
			$= (0.0206 \times 40) + 0.312 = 1.136$	M1	For prediction. FT their equation provided $b > 0$
			Residual = 1.09 - 1.136	M1	For difference between 1.09 and prediction.
			= -0.046	A1	Allow –0.05
				[3]	
1	(vi)		Regression line gives a prediction of	B1*	B1 for obtaining a prediction from regression
			$(0.0206 \times 200) + 0.312 = 4.432$		equation or from graph
			This is well above the observed value.	E1	E1 for noting the large difference between
				dep*	prediction and actual value
			It could be that the relationship breaks down for	E1	E1 for suitable interpretation regarding the
			larger thickness, or that the relationship is not linear		relationship between maximum height and thickness
				[3]	

G	Question		Answer	Marks Guidance		
2	(i)	(A)	$e^{-2.1}2.1^{\circ}$			
			$P(X=0) = -\frac{0!}{0!}$	M1	For calculation	
			= 0.1225	A1	CAO Allow 0.122	
			Or from tables $P(X = 0) = 0.1225$			
				[2]		
2	(i)	(B)	$P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.3796$	M 1	M1 for use of correct structure. i.e. M0 for use of $1 - P(X \le 2)$ or $1 - 0.6796$	
					Using $\lambda = 2.0$ leading to $1 - 0.4060$ gets M1	
			= 0.6204	A1	CAO Allow 0.6203, 0.620	
				[2]		
2	(i)	(<i>C</i>)	New $\lambda = 5 \times 2.1 = 10.5$	B1	For mean (SOI)	
			P(Between 5 and 10 in 5 mins)			
			= 0.5207 - 0.0211	M1	For $P(X \le 10) - P(X \le 4)$ used.	e.g. 1 – 0.9379 leads to B0M1A0
			= 0.4996	A1	CAO Allow 0.500, 0.50, Condone 0.5 www.	201011110
				[3]		
2	(ii)		Mean number in 60 minutes = $60 \times 2.1 = 126$			
			Using Normal approx. to the Poisson,	B1	For Normal approx.	
			$X \sim N(126, 126)$	B1	For correct parameters (SOI)	
			$P(X \ge 130) = P\left(Z \ge \frac{129.5 - 126}{\sqrt{126}}\right)$	B1	For correct continuity correction	
			$= P(Z > 0.3118) = 1 - \Phi(0.3118)$	M 1	For correct probability structure	
			= 1 - 0.6224			
			= 0.3776	A1	CAO, (Do not FT wrong or omitted CC). Allow 0.378www & 0.3775	
				[5]		

C	Question		Answer			Guidance	
2	(iii)		(Because if butterflies are blown in pairs,) t will no longer be occurring singly.	he events	E1		Accept 'not independent'
					[1]		
2	(iv)		P(3 or fewer) = P(3 or fewer individuals an)	d no pairs) +			
			P(0 or 1 individual and 1 pair)		M1	For P(0 pairs) (= 0.8187)	
			$= (0.9068 \times 0.8187) + (0.4932 \times (0.9825 -$	0.8187))	M1	For P(1 pair) (= 0.1638 or 0.1637)	First two M1s can be awarded for 0.9825
			$= (0.9068 \times 0.8187) + (0.4932 \times 0.1638)$		M2	For structure M2 for correct 6 combinations identified and their probabilities added, M1 for 5 combinations identified and their probabilities added.	
			= 0.7424 + 0.0808				
			= 0.8232		A1	CAO Allow awrt 0.823	
			Or				
			using <i>D</i> for the number of pairs and <i>S</i> for the singles	e number of			
			$P(D = 0) \times P(S = 0) = e^{-0.2} \times e^{-1.7}$	= 0.1495			
			$P(D = 0) \times P(S = 1) = e^{-0.2} \times 1.7e^{-1.7}$	= 0.2542			
			$P(D = 0) \times P(S = 2) = e^{-0.2} \times 1.7e^{-1.7} \div 2$ $P(D = 0) \times P(S = 2) = e^{-0.2} \times 1.7e^{-1.7} \div 2$	= 0.2161			
			$P(D = 0) \times P(S = 5) = e^{-1.7} \times 1.7 e^{-1.7}$ $P(D = 1) \times P(S = 0) = 0.2e^{-0.2} \times e^{-1.7}$	= 0.1224 = 0.0299			
			$P(D = 1) \times P(S = 1) = 0.2e^{-0.2} \times 1.7e^{-1.7}$	= 0.0508			
			Or				
			$P(D = 0) \times P(S = 3) + P(D = 1) \times P(S = 1)$			P(3 butterflies) (= 0.1733)	
			$P(D = 0) \times P(S = 2) + P(D = 1) \times P(S = 0)$			P(2 butterflies) (= 0.2460)	
			$P(D=0) \times P(S=1)$			P(1 butterfly) (= 0.2542)	
			$\mathbf{P}(D=0)\times\mathbf{P}(S=0)$			P(0 butterflies) (= 0.1495)	
1							

C	Question		Answer	Marks	Guidance
			Or $P(D \le 1) \times P(S \le 1) = 0.98247 \times 0.49324$ $D(D = 0) \times P(S = 2) = 0.21613$ $D(D = 0) \times P(S = 3) = 0.12247$	[5]	
3	(i)	(A)	$P(X < 450) = P\left(Z < \frac{450 - 435}{30}\right)$	M1	For standardising. M0 if 'continuity correction' applied
			$= P(Z < 0.5) = \Phi(0.5)$ = 0.6915	M1 A1 [3]	For correct structure CAO Allow 0.692
3	(i)	(B)	P(400 < X < 450) = $P\left(\frac{400 - 435}{30} < Z < \frac{450 - 435}{30}\right)$ = $P(-1.1667 < X < 0.5)$ = $\Phi(0.5) - \Phi(-1.1667)$ = $0.6915 - 0.1216$	M1 B1	For correct structure For use of difference column to obtain 0.8784.
			= 0.5699	A1 [3]	0.8783, 0.1216 or 0.1217. Condone 0.8782 or 0.1218 FT "their 0.6915" – 0.1216 (or 0.1217)
3	(ii)		P(all 5 between 400 and 450) = 0.5699 ⁵ = 0.0601	M1 A1 [2]	FT Allow 0.060

0	Question	Answer	Marks	Guidance		
3	(iii)	P(Y < 350) = 0.2, P(Y > 390) = 0.1				
		$P(Z < \frac{350 - \mu}{\sigma}) = 0.2$ $\Phi^{-1}(0.2) = -0.8416$ $\frac{350 - \mu}{\sigma} = -0.8416$ $P(Z > \frac{390 - \mu}{\sigma}) = 0.1$	M1	For equation as seen or equivalent with their –ive z value	If 'continuity corrections' applied allow M marks but do not	
		σ			marks	
		$\Phi^{-1}(0.9) = 1.282$	B1	For 1.282 or -0.8416		
		$\frac{390-\mu}{\sigma} = 1.282$	M1	For equation as seen or equivalent with their +ive z value		
		$350 = \mu - 0.8416 \sigma$				
		$390 = \mu + 1.282 \sigma$				
		$2.1236 \sigma = 40$				
		$\sigma = 18.84$	Al	Allow 18.8	Answers to max 2 d.p.	
		$\mu = 350 + (0.8416 \times 18.84) = 365.85$	A1	Allow 365.86, 366, 365.9		
			[5]			
3	(iv)	$\Phi^{-1}(0.975) = 1.96$	B1	For using a suitable pair of z values e.g. ± 1.96		
		$a = 365.85 - (1.96 \times 18.84)$	M1	For either equation provided that a suitable pair of <i>z</i> -values is used. e.g. $+2.326$ and -1.751		
		= 328.9		FT their μ and σ to 2 d.p. (A0 if 'continuity	Accept any	
			AI	correction' used)	correct values of a and b .	
		$b = 365.85 + (1.96 \times 18.84)$				
		= 402.8	A1	FT their μ and σ to 2 d.p. (A0 if 'continuity correction' used)		
			[4]			

January 2	2013
-----------	------

C	Question		Answer			Marks	Guidance	
4	(a)		H ₀ : no associa H ₁ : some asso	tion between grade ciation between gra	and hours worked ade and hours worked;	B1	Hypotheses in context	
			A or B C or lower	Less than 5hrs 17.05 15.95	At least 5hrs 13.95 13.05	M1 A1	Any row/column correct For expected values (to 2 dp)	
			A or B C or lower	Less than 5hrs 0.5104 0.5456	At least 5hrs 0.6238 0.6669	M1 A1	For valid attempt at (O-E) ² /E. Any row column correct. For all correct	NB These M1A1 marks cannot be implied by a correct final value of X^2
			$X^2 = 2.347$			B1		
			Refer to χ_1^2			M1	For 1 deg of freedom. No FT from here if wrong.	
			Critical value	at 5% level = 3.841		A1	CAO for cv or p -value = 0.1255. SC1 for cv or p -value if 1 dof not seen.	
			Result is not s	ignificant.				
			There is insuff association be	icient evidence to the tween hours worke	suggest that there is any d and grade.	E1	For conclusion in context. NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1 or final E1	
						[9]		

C	Questi	ion	Answer		Guidance
4	(b)		$\overline{x} = 417.79$	B1	For \overline{x}
			H ₀ : $\mu = 420$;	B1	For use of 420 in hypotheses. Hypotheses in words must refer to population. Do not allow alternative symbols unless clearly defined as the population mean.
			$H_1: \mu \neq 420$	B1	For both correct
			Where μ denotes the mean volume of the cans of tomato purée (in the population)	B1	For definition of μ . Condone omission of "population" if correct notation μ is used, but if μ is defined as the sample mean then award B0 .
			Test statistic $=\frac{417.79 - 420}{3.5 / \sqrt{10}} = \frac{-2.21}{1.107} = -1.997$	M1* A1	must include $\sqrt{10}$ FT their $\bar{\mathbf{x}}$
			Lower 1% level 2 tailed critical value of $z = -2.576$	B1*	For -2.576 Must be -2.576 unless it is clear that absolute values are being used.
			-1.997 > -2.576	M1 dep*	For sensible comparison leading to a conclusion.
			So not significant. There is insufficient evidence to reject H0	Ĩ	
			There is insufficient evidence to suggest that the average volumes of the cans of tomato purée is not 420ml	A1	For conclusion in words in context provided that correct cv used. FT only candidate's test statistic.
				[9]	

ADDITIONAL NOTES REGARDING QUESTION 4 (b)

<u>Critical Value Method</u> $420 - 2.576 \times 3.5 \div \sqrt{10}$ gets M1*B1* = 417.148... gets A1 417.79 > 417.148.. gets M1dep* for sensible comparison A1 still available for correct conclusion in words & context

Confidence Interval Method CI centred on 417.79 + or $-2.5756 \times 3.5 \div \sqrt{10}$ gets M1* B1* = (414.93..., 420.64..) gets A1 NOTE that the final M1dep* A1 available only if 2.576 used. "Contains 420" gets M1dep* A1 still available for correct conclusion in words & context

Probability Method

Finding P(sample mean < 417.79) = 0.0229 gets M1* A1 B1*

 $0.0229 > 0.005^*$ gets M1dep* for a sensible comparison if a conclusion is made.

A1 available for a correct conclusion in words & context.

Condone P(sample mean > 417.79) = 0.9771 for M1* but only allow A1 B1* if sensible comparison made, at which point the final M1dep* and A1 are still available

ADDITIONAL NOTE REGARDING OVER-SPECIFICATION OF ANSWERS

Over-specification by providing final answers correct to 5 or more significant figures will be penalised. When this applies, candidates may lose no more than 2 marks per question and no more than 4 marks in total. The only exception to this rule is in Question 3 parts (iii) & (iv) – see guidance notes.

	Questi	on	Answer	Marks	Guidance
1	(i)		EITHER:		
			$S_{xy} = \sum xy - \frac{1}{n} \sum x \sum y = 40.66 - \frac{1}{60} \times 43.62 \times 55.15$	M1*	For method for S_{xy}
			= 0.56595		
			$S_{xx} = \sum x^2 - \frac{1}{n} (\sum x)^2 = 32.68 - \frac{1}{60} \times 43.62^2$	M1*	For method for at least one of S_{xx} or S_{yy}
			= 0.96826		
			$S_{yy} = \sum y^2 - \frac{1}{n} \left(\sum y\right)^2 = 51.44 - \frac{1}{60} \times 55.15^2$	A1	For at least one of S_{xy} , S_{xx} or S_{yy} (to 2 sf) Note Allow 0.57322 for S_{xy} and 0.76634
			= 0.74796		for S_{yy} from rounding mean of y to 0.919.
			$r = \frac{S_{xy}}{\sqrt{S_x S_x}} = \frac{0.56595}{\sqrt{0.96826 \times 0.74796}} = 0.665$	M1 dep*	For structure of <i>r</i>
			$\sqrt{3_{xx}}$, $\sqrt{3_{yy}}$, $\sqrt{0.90820 \times 0.74790}$	AI	For answer rounding to 0.66 or 0.67
			OR:	[5]	
			$\operatorname{cov}(x,y) = \frac{\sum xy}{n} - \overline{xy} = 40.66/60 - (43.62/60 \times 55.15/60)$	M1*	For method for $cov(x, y)$
			= 0.0094325		
			rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(0.96826/60)} = \sqrt{0.016137} = 0.1270$	M1*	For method for at least one msd or rmsd
			rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(0.74796/60)} = \sqrt{0.012466} = 0.1117$	A1	For at least one of $cov(x, y)$, msd or rmsd correct (to 2 sf)
			$r = \frac{\text{cov}(x, y)}{\text{rmsd}(x)\text{rmsd}(y)} = -\frac{0.0094325}{0.1270 \times 0.1117} = 0.665$	M1 dep*	For structure of <i>r</i>
				A1	For answer rounding to0.66 or 0.67
					Methods mixed – max M0M1A1M0A0
				[5]	

4767

Que	stion	Answer		Guidance
1 (ii)		H ₀ : $\rho = 0$ H ₁ : $\rho > 0$ (one-tailed test)	B1	For H_0 , H_1 in symbols. Hypotheses in words must refer to population. Do not allow alternative symbols unless clearly defined as the population correlation coefficient.
	where ρ is the population correlation coefficient		B1	For defining ρ . Condone omission of "population" if correct notation ρ is used, but if ρ is defined as the sample correlation coefficient then award B0 . Allow " ρ is the pmcc".
		For $n = 60$, 5% critical value = 0.2144	B1	For critical value
		Since 0.665 > 0.2144, the result is significant.	M1	For sensible comparison leading to a conclusion provided that $ r < 1$. The comparison can be in the form of a diagram as long as it is clear and unambiguous. Sensible comparison: e.g. $0.665 > 0.2144$ is 'sensible' whereas $0.665 > -0.2144$ is 'not sensible'. Reversed inequality sign e.g. $0.665 < 0.2144$ etc. gets max M1 A0.
	Thus we have sufficient evidence to reject H_0		A1	For reject H_0 o.e. FT their <i>r</i> and critical value from 5% 1-tail column.
		There is sufficient evidence at the 5% level to suggest that there is positive correlation between FEV1 before and after the two-week course.	E1	For correct, non-assertive conclusion in context (allow 'x and y' for context). E0 if H_0 and H_1 not stated, reversed or mention a value other than zero for ρ in H_0 .
			[6]	

	Question	Answer	Marks	Guidance	
1	(iii)	The underlying population must have a bivariate Normal distribution. Yes, since the scatter diagram appears to have a roughly elliptical shape.	B1 E1	Condone "bivariate Normal distribution", "underlying bivariate Normal distribution", but do not allow "the data have a bivariate Normal distribution" Condone 'oval' or suitable diagram	
			[2]		
1	(iv)	The significance level is the probability of rejecting the null hypothesis	E1*	For "probability of rejecting H_0 " or "probability of a significant result".	
		when in fact it is true.	E1dep* [2]	For "when H ₀ is true"	
1	(v)	$\sum x = 43.62 + 0.45 = 44.07$ $\sum y = 55.15 - 0.45 = 54.70$ $\sum xy = 40.66$	B1	For $\sum x$ or $\sum y$ or $\sum xy$	
		$\sum x^2 = 32.68 + 1 - 0.55^2 = 33.3775$ $\sum y^2 = 51.44 - 1 + 0.55^2 = 50.7425$	B1	For $\sum x^2$ or $\sum y^2$ (to 2 dp)	
			B1	For all correct (ignore <i>n</i>)	
			[3]		
2	(i)	P(At least one has red hair) = $1 - 0.97^{10}$	M1	M1 for $1 - 0.97^{10}$	
		= 0.263	A1	Allow 0.26	
			[2]		
2	(ii)	(Because X is binomially distributed), n is large	E1	Allow "sample is large" for <i>n</i> is large	
		and p is small.	E1	Allow " $np < 10$ " or "mean \approx variance" for " p is	
				Siliali Do not allow "the probability is small"	
		Mean -1.8	B1	Do not anow the probability is small	
		110000 - 110	[3]		

June	201	3
------	-----	---

	Questi	on	Answer		Guidance
2	(iii)	(A)	$P(X=2) = e^{-1.8} \frac{1.8^2}{2!} = 0.2678$	M1	For calculation for $P(X = 2)$
			OR = 0.7306 - 0.4628 = 0.2678	A1	FT their mean. Allow answer to 3sf.
				[2]	
2	(iii)	(<i>B</i>)	$P(X > 2) = 1 - P(X \le 2) = 1 - 0.7306$	M1	$1 - P(X \le 2)$ used. e.g. $1 - P(X \le 2) = 1 - 0.4628$ gets
			= 0.2694	A1	M0
					CAO
				[2]	
2	(iv)		The mean $(np = 1.8)$ is too small	E1*	For "mean is too small" or "mean < 10"
			It is not appropriate to use a Normal	E1dep*	For "not appropriate".
			approximation		Do not allow " <i>p</i> is too small".
				[2]	
2	(v)		Binomial(5000, 0.03)	B1*	For binomial, or B(,)
				B1dep*	For parameters
				[2]	
2	(vi)		Mean $5000 \times 0.03 = 150$	B1	For mean (soi)
			Variance = $5000 \times 0.03 \times 0.97 = 145.5$	B1	For variance (soi)
			Using Normal approx. to the binomial,		
	X		<i>X</i> ~ N(150, 145.5)		
	$P(X \ge 160) = P\left(Z \ge \frac{159.5 - 150}{\sqrt{145.5}}\right)$		B1	For continuity corr.	
		$= P(Z > 0.7876) = 1 - \Phi(0.7876) = 1 - 0.7846$		M1	For probability using correct tail and structure (condone omission of/incorrect c.c.)
		= 0.215 (to 3 sig.fig.)		A1	CAO, (Do not FT wrong or omitted CC) Allow 0.2155. Do not allow 0.216
				[5]	

PMT

June 2013

Mark Scheme

4767

	Question	n Answer	Marks	Guidance
3	(i)	$P(Y = 76) = P\left(\frac{75.5 - 76}{12} \le Z \le \frac{76.5 - 76}{12}\right)$	B1	For one correct continuity correction used
		= P(-0.04166 < Z < 0.04166) = $\Phi(0.04166) - (1 - \Phi(0.04166))$	M1	For standardizing
	$= 2 \times \Phi(0.04166) - 1$ = 2 × 0.5167 - 1		M1	For correctly structured probability calculation.
		= 0.0334	A1	CAO inc use of diff tables. Allow 0.0330 – 0.0340 www.
			[4]	
3	(ii)	$P(Y \ge 80) = P\left(Z \ge \frac{79.5 - 76}{12}\right)$		For correct cc used
	$= P(Z > 0.2917) = 1 - \Phi(0.2917)$		M1	For correct structure
	= 1 - 0.6148 = 0.3852 = 0.385 to 3 sig fig		A1	CAO do not allow 0.386
			[3]	
3	(iii)	$3 \times 0.3852 \times 0.6148^2 = 0.4368$	M1	$3 \times \text{their } p \times (1 - \text{their } p)^2$
				FT their <i>p</i> . Allow 2sf if working seen.
			[2]	

PMT

	Question		Answer		Guidance	
3	(iv)		EITHER: $P(\text{Score } \geq k) = 0.1$			
			$\Phi^{-1}(0.9) = 1.282$	B1	For 1.282	
			$\frac{k - 76}{12} = 1.282$	M1	Allow $k - 0.5$ used for k. Positive z used.	
			$k = 76 + (1.282 \times 12) = 91.38$ or $k = 76 + 0.5 + (1.282 \times 12) = 91.88$	A1	For 91.38 or 91.88	
			91.38 > 90.5 or 91.88 > 91	M1	Relevant comparison (e.g. diagram)	WWW
			so lowest reported mark $= 92$	A1		
			OR Trial and improvement method	M1	M1 for attempt to find P(Mark \geq integer)	
			$P(Mark \ge 91) = P(Score \ge 90.5) = 0.1135$	A1	A1 for 0.1135	
			$P(Mark \ge 92) = P(Score \ge 91.5) = 0.0982$	A1	A1 for 0.0982	
			$P(Mark \ge 91) > 10\%$ and $P(Mark \ge 92) < 10\%$	M1	M1 for comparisons	WWW
			so lowest reported mark $= 92$	A1		
				[5]		
3	(v)		$P(Y \le 50) = 0.2$			
			$P(Z \le \frac{50.5 - \mu}{12}) = 0.2$	B1	For 50.5 used	
			$50.5 - \mu$ value 2 0 0 0 0 0 0 0	B1	For -0.8416. Condone - 0.842	
			$\frac{1}{12} = \Phi^{-1}(0.2) = -0.8416$		Condone 0.8416 if numerator reversed.	
				M1	For structure.	
			$\mu = 50.5 + (12 \times 0.8416) = 60.6$	A1	CAO	
				[4]		

	Question		Answer					Marks	Guidance	
4	(i)	H_0 : no association between sex and artist preferred H_1 : some association between sex and artist preferred		B1	For both hypotheses in context					
			EXPECTED Male Female	Monet 12.13 13.87	Renoir 28 32	Degas 13.07 14.93	Cézanne 16.8 19.2	M1 A2	For expected values (to 2 dp where appropriate) (allow A1 for at least one row or column correct)	
			CONTRIB'N Male Female	Monet 1.4081 1.2321	Renoir 0.3214 0.2813	Degas 1.8626 1.6298	Cézanne 0.2881 0.2521	M1 A2	For valid attempt at $(O-E)^2/E$ For all correct (to 2 dp) and presented in a table or clear list. (Allow A1 for at least one row or column correct)	NB:These three marks cannot be implied by a correct final value of X^2
			$X^{2} = 7.28$ Refer to χ_{3}^{2}					B1 B1	Allow 7.27 for 3 deg of f	www
			Critical value at Result is signific	10% level =	= 6.251			B1 B1	CAO for cv No FT from here if wrong or omitted, unless <i>p</i> -value used instead FT their X^2	B1 for <i>p</i> -value = 0.0636
			There is evidenc between sex and	e to sugges artist prefe	t that there there	is some a	ssociation	E1	For correct (FT their X^2), non-assertive conclusion, in context.	
			NB if $H_0 H_1$ rev award first B1 or	versed, or ' r final E1	correlation	' mention	ed, do not	[12]		

	Questio	on	Answer	Marks	Guidance	
4	(ii)	Ν	Monet: More females and fewer males than expected	E1*	FT their table of contributions	NB MAX 3/6 for
		p	orefer Monet, as indicated by large contribution(s) (of	E1dep*		answers not referring
		1	.4081 and 1.2321).			to contributions
						(explicitly or
		п	Densin Dreferences are much as expected as indicated by	F 1		implicitly).
		SI	mall contributions.	EI		
		D	Degas: Fewer females and more males than expected	E1*		
		p 1	prefer Degas, as indicated by large contribution(s) (of	depE1*		
			Cézanne: Preferences are much as expected, as indicated	E1		SC1 Renoir and
		b	by small contributions.			Cézanne have correct
						comments for both
						to contributions
				[6]		to contributions
1		1		[v]		